两组连续平方和的方程

IF 0.4 Q4 MATHEMATICS
P. Bush, K. V. Murphy
{"title":"两组连续平方和的方程","authors":"P. Bush, K. V. Murphy","doi":"10.7546/nntdm.2022.28.4.677-691","DOIUrl":null,"url":null,"abstract":"In this paper we investigate equations featuring sums of consecutive square integers, such as $3^2 + 4^2 = 5^2$, and $108^2 + 109^2 + 110^2 = 133^2 + 134^2$. In general, for a sum of $m+1$ consecutive square integers, $x^2 + (x+1)^2 + \\cdots + (x+m)^2$, there is a distinct set of $m$ consecutive squares, $(x+n)^2 + (x+(n+1))^2 + \\cdots + (x+(n+(m-1)))^2$, to which these are equal. We present a bootstrap method for constructing these equations, which yields solutions comprising an infinite two-dimensional array. We apply a similar method to constructing consecutive square sum equations involving $m+2$ terms on the left, and $m$ terms on the right, formed from two distinct sets of consecutive squares separated one term to the left of the equals sign, such as $2^2 + 3^2 + 6^2 = 7^2$.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equations of two sets of consecutive square sums\",\"authors\":\"P. Bush, K. V. Murphy\",\"doi\":\"10.7546/nntdm.2022.28.4.677-691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate equations featuring sums of consecutive square integers, such as $3^2 + 4^2 = 5^2$, and $108^2 + 109^2 + 110^2 = 133^2 + 134^2$. In general, for a sum of $m+1$ consecutive square integers, $x^2 + (x+1)^2 + \\\\cdots + (x+m)^2$, there is a distinct set of $m$ consecutive squares, $(x+n)^2 + (x+(n+1))^2 + \\\\cdots + (x+(n+(m-1)))^2$, to which these are equal. We present a bootstrap method for constructing these equations, which yields solutions comprising an infinite two-dimensional array. We apply a similar method to constructing consecutive square sum equations involving $m+2$ terms on the left, and $m$ terms on the right, formed from two distinct sets of consecutive squares separated one term to the left of the equals sign, such as $2^2 + 3^2 + 6^2 = 7^2$.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2022.28.4.677-691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.4.677-691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有连续平方整数和的方程,如$3^2 + 4^2 = 5^2$和$108^2 + 109^2 + 110^2 = 133^2 + 134^2$。一般来说,对于$m+1$连续平方整数的和,$x^2 +(x+1)^2 + \cdots +(x+m)^2$,存在一个不同的$m$连续平方的集合,$(x+n)^2 +(x+(n+1))^2 + \cdots +(x+(n+(m-1)))^2$,它们是相等的。我们提出了一种构造这些方程的自举方法,它产生了包含无限二维数组的解。我们应用类似的方法来构造连续的平方和方程,左边有$m+2$项,右边有$m$项,由两个不同的连续正方形组成,在等号左边分开一项,例如$2^2 + 3^2 + 6^2 = 7^2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equations of two sets of consecutive square sums
In this paper we investigate equations featuring sums of consecutive square integers, such as $3^2 + 4^2 = 5^2$, and $108^2 + 109^2 + 110^2 = 133^2 + 134^2$. In general, for a sum of $m+1$ consecutive square integers, $x^2 + (x+1)^2 + \cdots + (x+m)^2$, there is a distinct set of $m$ consecutive squares, $(x+n)^2 + (x+(n+1))^2 + \cdots + (x+(n+(m-1)))^2$, to which these are equal. We present a bootstrap method for constructing these equations, which yields solutions comprising an infinite two-dimensional array. We apply a similar method to constructing consecutive square sum equations involving $m+2$ terms on the left, and $m$ terms on the right, formed from two distinct sets of consecutive squares separated one term to the left of the equals sign, such as $2^2 + 3^2 + 6^2 = 7^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信