独立性、无限维和运算符

Q3 Mathematics
Nizar El Idrissi, S. Kabbaj
{"title":"独立性、无限维和运算符","authors":"Nizar El Idrissi, S. Kabbaj","doi":"10.2478/mjpaa-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract In [Appl. Comput. Harmon. Anal., 46 (2019), 664673] O. Christensen and M. Hasannasab observed that assuming the existence of an operator T sending en to en+1 for all n ∈ ℕ (where (en)n∈ℕ is a sequence of vectors) guarantees that (en)n∈ℕ is linearly independent if and only if dim{en}n∈ℕ = ∞. In this article, we recover this result as a particular case of a general order-theory-based model-theoretic result. We then return to the context of vector spaces to show that, if we want to use a condition like T(ei) = eϕ(i) for all i ∈ I where I is countable as a replacement of the previous one, the conclusion will only stay true if ϕ : I → I is conjugate to the successor function succ : n ↦n + 1 defined on ℕ. We finally prove a tentative generalization of the result, where we replace the condition T(ei) = eϕ(i) for all i ∈ I where ϕ is conjugate to the successor function with a more sophisticated one, and to which we have not managed to find a new application yet.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"9 1","pages":"86 - 96"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Independence, infinite dimension, and operators\",\"authors\":\"Nizar El Idrissi, S. Kabbaj\",\"doi\":\"10.2478/mjpaa-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In [Appl. Comput. Harmon. Anal., 46 (2019), 664673] O. Christensen and M. Hasannasab observed that assuming the existence of an operator T sending en to en+1 for all n ∈ ℕ (where (en)n∈ℕ is a sequence of vectors) guarantees that (en)n∈ℕ is linearly independent if and only if dim{en}n∈ℕ = ∞. In this article, we recover this result as a particular case of a general order-theory-based model-theoretic result. We then return to the context of vector spaces to show that, if we want to use a condition like T(ei) = eϕ(i) for all i ∈ I where I is countable as a replacement of the previous one, the conclusion will only stay true if ϕ : I → I is conjugate to the successor function succ : n ↦n + 1 defined on ℕ. We finally prove a tentative generalization of the result, where we replace the condition T(ei) = eϕ(i) for all i ∈ I where ϕ is conjugate to the successor function with a more sophisticated one, and to which we have not managed to find a new application yet.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"9 1\",\"pages\":\"86 - 96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2023-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

[摘要][应用]第一版。哈蒙。分析的O. Christensen和M. Hasannasab观察到,假设对于所有n∈_1(其中(en)n∈_1是一个向量序列)存在一个使n到n+1的算子T,则保证了当且仅当dim{en}n∈_1 =∞时(en)n∈_1是线性无关的。在本文中,我们将这一结果作为一般基于序理论的模型理论结果的一个特例来恢复。然后,我们回到向量空间的上下文来证明,如果我们想要使用一个条件,如T(ei) = eϕ(i)对于所有i∈i,其中i可以作为前一个的替换,则只有当φ: i→i与定义在∈上的后继函数suc: n∈n + 1共轭时,结论才会成立。我们最终证明了结果的一个尝试性推广,其中我们替换了所有i∈i的条件T(ei) = eϕ(i),其中φ与后发函数共轭,并且我们还没有设法找到一个新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independence, infinite dimension, and operators
Abstract In [Appl. Comput. Harmon. Anal., 46 (2019), 664673] O. Christensen and M. Hasannasab observed that assuming the existence of an operator T sending en to en+1 for all n ∈ ℕ (where (en)n∈ℕ is a sequence of vectors) guarantees that (en)n∈ℕ is linearly independent if and only if dim{en}n∈ℕ = ∞. In this article, we recover this result as a particular case of a general order-theory-based model-theoretic result. We then return to the context of vector spaces to show that, if we want to use a condition like T(ei) = eϕ(i) for all i ∈ I where I is countable as a replacement of the previous one, the conclusion will only stay true if ϕ : I → I is conjugate to the successor function succ : n ↦n + 1 defined on ℕ. We finally prove a tentative generalization of the result, where we replace the condition T(ei) = eϕ(i) for all i ∈ I where ϕ is conjugate to the successor function with a more sophisticated one, and to which we have not managed to find a new application yet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信