{"title":"预训练卷积神经网络在一个具有挑战性的测试用例中表现良好:使用少量训练图像识别植物昆虫(半翅目:Miridae)","authors":"A. Knyshov, Samantha Hoang, C. Weirauch","doi":"10.1093/isd/ixab004","DOIUrl":null,"url":null,"abstract":"Abstract Automated insect identification systems have been explored for more than two decades but have only recently started to take advantage of powerful and versatile convolutional neural networks (CNNs). While typical CNN applications still require large training image datasets with hundreds of images per taxon, pretrained CNNs recently have been shown to be highly accurate, while being trained on much smaller datasets. We here evaluate the performance of CNN-based machine learning approaches in identifying three curated species-level dorsal habitus datasets for Miridae, the plant bugs. Miridae are of economic importance, but species-level identifications are challenging and typically rely on information other than dorsal habitus (e.g., host plants, locality, genitalic structures). Each dataset contained 2–6 species and 126–246 images in total, with a mean of only 32 images per species for the most difficult dataset. We find that closely related species of plant bugs can be identified with 80–90% accuracy based on their dorsal habitus alone. The pretrained CNN performed 10–20% better than a taxon expert who had access to the same dorsal habitus images. We find that feature extraction protocols (selection and combination of blocks of CNN layers) impact identification accuracy much more than the classifying mechanism (support vector machine and deep neural network classifiers). While our network has much lower accuracy on photographs of live insects (62%), overall results confirm that a pretrained CNN can be straightforwardly adapted to collection-based images for a new taxonomic group and successfully extract relevant features to classify insect species.","PeriodicalId":48498,"journal":{"name":"Insect Systematics and Diversity","volume":" ","pages":"1 - 10"},"PeriodicalIF":3.2000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/isd/ixab004","citationCount":"9","resultStr":"{\"title\":\"Pretrained Convolutional Neural Networks Perform Well in a Challenging Test Case: Identification of Plant Bugs (Hemiptera: Miridae) Using a Small Number of Training Images\",\"authors\":\"A. Knyshov, Samantha Hoang, C. Weirauch\",\"doi\":\"10.1093/isd/ixab004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Automated insect identification systems have been explored for more than two decades but have only recently started to take advantage of powerful and versatile convolutional neural networks (CNNs). While typical CNN applications still require large training image datasets with hundreds of images per taxon, pretrained CNNs recently have been shown to be highly accurate, while being trained on much smaller datasets. We here evaluate the performance of CNN-based machine learning approaches in identifying three curated species-level dorsal habitus datasets for Miridae, the plant bugs. Miridae are of economic importance, but species-level identifications are challenging and typically rely on information other than dorsal habitus (e.g., host plants, locality, genitalic structures). Each dataset contained 2–6 species and 126–246 images in total, with a mean of only 32 images per species for the most difficult dataset. We find that closely related species of plant bugs can be identified with 80–90% accuracy based on their dorsal habitus alone. The pretrained CNN performed 10–20% better than a taxon expert who had access to the same dorsal habitus images. We find that feature extraction protocols (selection and combination of blocks of CNN layers) impact identification accuracy much more than the classifying mechanism (support vector machine and deep neural network classifiers). While our network has much lower accuracy on photographs of live insects (62%), overall results confirm that a pretrained CNN can be straightforwardly adapted to collection-based images for a new taxonomic group and successfully extract relevant features to classify insect species.\",\"PeriodicalId\":48498,\"journal\":{\"name\":\"Insect Systematics and Diversity\",\"volume\":\" \",\"pages\":\"1 - 10\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/isd/ixab004\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Systematics and Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/isd/ixab004\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Systematics and Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/isd/ixab004","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Pretrained Convolutional Neural Networks Perform Well in a Challenging Test Case: Identification of Plant Bugs (Hemiptera: Miridae) Using a Small Number of Training Images
Abstract Automated insect identification systems have been explored for more than two decades but have only recently started to take advantage of powerful and versatile convolutional neural networks (CNNs). While typical CNN applications still require large training image datasets with hundreds of images per taxon, pretrained CNNs recently have been shown to be highly accurate, while being trained on much smaller datasets. We here evaluate the performance of CNN-based machine learning approaches in identifying three curated species-level dorsal habitus datasets for Miridae, the plant bugs. Miridae are of economic importance, but species-level identifications are challenging and typically rely on information other than dorsal habitus (e.g., host plants, locality, genitalic structures). Each dataset contained 2–6 species and 126–246 images in total, with a mean of only 32 images per species for the most difficult dataset. We find that closely related species of plant bugs can be identified with 80–90% accuracy based on their dorsal habitus alone. The pretrained CNN performed 10–20% better than a taxon expert who had access to the same dorsal habitus images. We find that feature extraction protocols (selection and combination of blocks of CNN layers) impact identification accuracy much more than the classifying mechanism (support vector machine and deep neural network classifiers). While our network has much lower accuracy on photographs of live insects (62%), overall results confirm that a pretrained CNN can be straightforwardly adapted to collection-based images for a new taxonomic group and successfully extract relevant features to classify insect species.