扩展空间金字塔池化提高航空图像分割精度

Q4 Computer Science
Manuel Eugenio Morocho-Cayamcela
{"title":"扩展空间金字塔池化提高航空图像分割精度","authors":"Manuel Eugenio Morocho-Cayamcela","doi":"10.5565/REV/ELCVIA.1337","DOIUrl":null,"url":null,"abstract":"This thesis addresses the environmental uncertainty in satellite images as a computer vision task using semantic image segmentation. We focus in the reduction of the error caused by the use of a single-environment models in wireless communications. We propose to use computer vision and image analysis to segment a geographical terrain in order to employ a specific propagation model in each segment of the link. Our computer vision architecture achieved a segmentation accuracy of 89.41%, 86.47%, and 87.37% in the urban, suburban, and rural classes, respectively. Results indicate that estimating propagation loss with our multi-environment model reduced the root mean square deviation (RMSD) with respect to two publicly available tracing datasets.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling\",\"authors\":\"Manuel Eugenio Morocho-Cayamcela\",\"doi\":\"10.5565/REV/ELCVIA.1337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This thesis addresses the environmental uncertainty in satellite images as a computer vision task using semantic image segmentation. We focus in the reduction of the error caused by the use of a single-environment models in wireless communications. We propose to use computer vision and image analysis to segment a geographical terrain in order to employ a specific propagation model in each segment of the link. Our computer vision architecture achieved a segmentation accuracy of 89.41%, 86.47%, and 87.37% in the urban, suburban, and rural classes, respectively. Results indicate that estimating propagation loss with our multi-environment model reduced the root mean square deviation (RMSD) with respect to two publicly available tracing datasets.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/REV/ELCVIA.1337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.1337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

本文将卫星图像中的环境不确定性作为一项使用语义图像分割的计算机视觉任务来解决。我们专注于减少在无线通信中使用单一环境模型所引起的误差。我们建议使用计算机视觉和图像分析来分割地理地形,以便在链路的每个片段中使用特定的传播模型。我们的计算机视觉架构在城市、郊区和农村类别中分别实现了89.41%、86.47%和87.37%的分割准确率。结果表明,使用我们的多环境模型估计传播损耗降低了相对于两个公开可用的跟踪数据集的均方根偏差(RMSD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling
This thesis addresses the environmental uncertainty in satellite images as a computer vision task using semantic image segmentation. We focus in the reduction of the error caused by the use of a single-environment models in wireless communications. We propose to use computer vision and image analysis to segment a geographical terrain in order to employ a specific propagation model in each segment of the link. Our computer vision architecture achieved a segmentation accuracy of 89.41%, 86.47%, and 87.37% in the urban, suburban, and rural classes, respectively. Results indicate that estimating propagation loss with our multi-environment model reduced the root mean square deviation (RMSD) with respect to two publicly available tracing datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信