{"title":"对偶Banach空间中凸集的弱$^*$闭包和导集","authors":"M. Ostrovskii","doi":"10.4064/sm211211-25-6","DOIUrl":null,"url":null,"abstract":"Abstract: The paper is devoted to the convex-set counterpart of the theory of weak derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal α, there exists a convex subset A in X such that α is the least ordinal for which the weak derived set of order α coincides with the weak closure of A. This result extends the previously known results on weak derived sets by Ostrovskii (2011) and Silber (2021).","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weak$^*$ closures and derived sets for convex sets in dual Banach spaces\",\"authors\":\"M. Ostrovskii\",\"doi\":\"10.4064/sm211211-25-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The paper is devoted to the convex-set counterpart of the theory of weak derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal α, there exists a convex subset A in X such that α is the least ordinal for which the weak derived set of order α coincides with the weak closure of A. This result extends the previously known results on weak derived sets by Ostrovskii (2011) and Silber (2021).\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm211211-25-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm211211-25-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weak$^*$ closures and derived sets for convex sets in dual Banach spaces
Abstract: The paper is devoted to the convex-set counterpart of the theory of weak derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal α, there exists a convex subset A in X such that α is the least ordinal for which the weak derived set of order α coincides with the weak closure of A. This result extends the previously known results on weak derived sets by Ostrovskii (2011) and Silber (2021).
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.