对偶Banach空间中凸集的弱$^*$闭包和导集

IF 0.7 3区 数学 Q2 MATHEMATICS
M. Ostrovskii
{"title":"对偶Banach空间中凸集的弱$^*$闭包和导集","authors":"M. Ostrovskii","doi":"10.4064/sm211211-25-6","DOIUrl":null,"url":null,"abstract":"Abstract: The paper is devoted to the convex-set counterpart of the theory of weak derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal α, there exists a convex subset A in X such that α is the least ordinal for which the weak derived set of order α coincides with the weak closure of A. This result extends the previously known results on weak derived sets by Ostrovskii (2011) and Silber (2021).","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weak$^*$ closures and derived sets for convex sets in dual Banach spaces\",\"authors\":\"M. Ostrovskii\",\"doi\":\"10.4064/sm211211-25-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The paper is devoted to the convex-set counterpart of the theory of weak derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal α, there exists a convex subset A in X such that α is the least ordinal for which the weak derived set of order α coincides with the weak closure of A. This result extends the previously known results on weak derived sets by Ostrovskii (2011) and Silber (2021).\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm211211-25-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm211211-25-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要:本文致力于Banach和Mazurkiewicz提出的子空间弱导集理论的凸集对应。主要结果如下:对于每个非弹性Banach空间X和每个可数后继序数α,X中存在一个凸子集a,使得α是阶α的弱导集与a的弱闭包重合的最小序数。这一结果扩展了Ostrovski(2011)和Silber(2021)关于弱导集的先前已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak$^*$ closures and derived sets for convex sets in dual Banach spaces
Abstract: The paper is devoted to the convex-set counterpart of the theory of weak derived sets initiated by Banach and Mazurkiewicz for subspaces. The main result is the following: For every nonreflexive Banach space X and every countable successor ordinal α, there exists a convex subset A in X such that α is the least ordinal for which the weak derived set of order α coincides with the weak closure of A. This result extends the previously known results on weak derived sets by Ostrovskii (2011) and Silber (2021).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信