V. Tzankova, Cvetelina Gorinova, M. Kondeva-Burdina, R. Simeonova, Stanislav Philipov, S. Konstantinov, P. Petrov, Dimitar Galabov, K. Yoncheva
{"title":"姜黄素负载三嵌段共聚胶束的抗氧化反应及生物相容性","authors":"V. Tzankova, Cvetelina Gorinova, M. Kondeva-Burdina, R. Simeonova, Stanislav Philipov, S. Konstantinov, P. Petrov, Dimitar Galabov, K. Yoncheva","doi":"10.1080/15376516.2016.1253811","DOIUrl":null,"url":null,"abstract":"Abstract To evaluate the safety profile of cationic micelles, based on triblock copolymer poly(dimethylaminoethyl methacrylate)–poly(e-caprolactone)–poly(dimethylaminoethyl methacrylate) (PDMAEMA9– PCL70–PDMAEMA9), the effects of empty (PM) and curcumin loaded micelles (PM-Curc) on nonenzyme induced lipid peroxidation (LPO) in vitro, hemolytic activity and morphological changes in some organs after repeated intraperitoneal administration in vivo were studied. To induce LPO, rat liver microsomes were incubated with a solution of iron sulfate and ascorbinic acid (Fe2+/AA). The effect of empty PM (40 and 100 μg/ml), PM-Curc and free curcumin (both at 3.48 and 8.7 μg curcumin/ml) was assessed at 20 min incubation time. In the non-enzyme induced LPO model, the investigated substances at all concentrations significantly decreased the formation of malondialdehyde (MDA), compared to the Fe2+/AA induced LPO group. According to the results it can be concluded that curcumin alone and loaded in PM, exert significant antioxidant activity. In the biocompatibility safety studies, the mean hemolytic index for polymeric carrier was less than 2%, indicating it was non-hemolytic. The general appearance of the organ tissues from Wistar rats, treated in vivo with curcumin loaded PM was similar to that of controls, thus showing no apparent toxicity after repeated 14-days treatment.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2016.1253811","citationCount":"6","resultStr":"{\"title\":\"Antioxidant response and biocompatibility of curcumin-loaded triblock copolymeric micelles\",\"authors\":\"V. Tzankova, Cvetelina Gorinova, M. Kondeva-Burdina, R. Simeonova, Stanislav Philipov, S. Konstantinov, P. Petrov, Dimitar Galabov, K. Yoncheva\",\"doi\":\"10.1080/15376516.2016.1253811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To evaluate the safety profile of cationic micelles, based on triblock copolymer poly(dimethylaminoethyl methacrylate)–poly(e-caprolactone)–poly(dimethylaminoethyl methacrylate) (PDMAEMA9– PCL70–PDMAEMA9), the effects of empty (PM) and curcumin loaded micelles (PM-Curc) on nonenzyme induced lipid peroxidation (LPO) in vitro, hemolytic activity and morphological changes in some organs after repeated intraperitoneal administration in vivo were studied. To induce LPO, rat liver microsomes were incubated with a solution of iron sulfate and ascorbinic acid (Fe2+/AA). The effect of empty PM (40 and 100 μg/ml), PM-Curc and free curcumin (both at 3.48 and 8.7 μg curcumin/ml) was assessed at 20 min incubation time. In the non-enzyme induced LPO model, the investigated substances at all concentrations significantly decreased the formation of malondialdehyde (MDA), compared to the Fe2+/AA induced LPO group. According to the results it can be concluded that curcumin alone and loaded in PM, exert significant antioxidant activity. In the biocompatibility safety studies, the mean hemolytic index for polymeric carrier was less than 2%, indicating it was non-hemolytic. The general appearance of the organ tissues from Wistar rats, treated in vivo with curcumin loaded PM was similar to that of controls, thus showing no apparent toxicity after repeated 14-days treatment.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2017-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2016.1253811\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2016.1253811\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2016.1253811","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Antioxidant response and biocompatibility of curcumin-loaded triblock copolymeric micelles
Abstract To evaluate the safety profile of cationic micelles, based on triblock copolymer poly(dimethylaminoethyl methacrylate)–poly(e-caprolactone)–poly(dimethylaminoethyl methacrylate) (PDMAEMA9– PCL70–PDMAEMA9), the effects of empty (PM) and curcumin loaded micelles (PM-Curc) on nonenzyme induced lipid peroxidation (LPO) in vitro, hemolytic activity and morphological changes in some organs after repeated intraperitoneal administration in vivo were studied. To induce LPO, rat liver microsomes were incubated with a solution of iron sulfate and ascorbinic acid (Fe2+/AA). The effect of empty PM (40 and 100 μg/ml), PM-Curc and free curcumin (both at 3.48 and 8.7 μg curcumin/ml) was assessed at 20 min incubation time. In the non-enzyme induced LPO model, the investigated substances at all concentrations significantly decreased the formation of malondialdehyde (MDA), compared to the Fe2+/AA induced LPO group. According to the results it can be concluded that curcumin alone and loaded in PM, exert significant antioxidant activity. In the biocompatibility safety studies, the mean hemolytic index for polymeric carrier was less than 2%, indicating it was non-hemolytic. The general appearance of the organ tissues from Wistar rats, treated in vivo with curcumin loaded PM was similar to that of controls, thus showing no apparent toxicity after repeated 14-days treatment.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.