R. Afshar, J. Stjärnesund, E. Gamstedt, O. Girlanda, F. Sahlén, D. Tjahjanto
{"title":"压缩致密实的微CT研究","authors":"R. Afshar, J. Stjärnesund, E. Gamstedt, O. Girlanda, F. Sahlén, D. Tjahjanto","doi":"10.1111/str.12442","DOIUrl":null,"url":null,"abstract":"As a non‐destructive inspection method, micro‐computed tomography has been employed for determining local properties of a cellulose‐based product, specifically pressboard. Furthermore, by utilizing the determined properties in a detailed numerical model, by means of a finite element analysis, we demonstrate a continuum anisotropic viscoelastic‐viscoplastic model. Through such a combination of non‐invasive experiments with accurate computations in mechanics, we attain a better understanding of materials and its structural integrity at a pre‐production stage increasing the success of the first prototype. In detail, this combination of micro‐computed tomography and finite element analysis improves accuracy in predicting materials response by taking into account the local material variations. Specifically, we have performed indentation tests and scanned the internal structure of the specimen for analysing the densification patterns within the material. Subsequently, we have used a developed material model for predicting the response of material to indentation. We have computed the indentation test itself by simulating the mechanical response of high‐density cellulose‐based materials. In the end, we have observed that pressboard, having initially a heterogeneous density distribution through the thickness, shows a shift in the densification to the more porous part after indentation. The densification maps of the simulated results are presented by comparing with the experimental results. A reasonable agreement is observed between the experimental and the simulated densifications patterns, which suggests that the proposed methodology can be used to predict densification also for other fibre‐based materials during manufacturing or in service loading.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A micro‐CT investigation of densification in pressboard due to compression\",\"authors\":\"R. Afshar, J. Stjärnesund, E. Gamstedt, O. Girlanda, F. Sahlén, D. Tjahjanto\",\"doi\":\"10.1111/str.12442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a non‐destructive inspection method, micro‐computed tomography has been employed for determining local properties of a cellulose‐based product, specifically pressboard. Furthermore, by utilizing the determined properties in a detailed numerical model, by means of a finite element analysis, we demonstrate a continuum anisotropic viscoelastic‐viscoplastic model. Through such a combination of non‐invasive experiments with accurate computations in mechanics, we attain a better understanding of materials and its structural integrity at a pre‐production stage increasing the success of the first prototype. In detail, this combination of micro‐computed tomography and finite element analysis improves accuracy in predicting materials response by taking into account the local material variations. Specifically, we have performed indentation tests and scanned the internal structure of the specimen for analysing the densification patterns within the material. Subsequently, we have used a developed material model for predicting the response of material to indentation. We have computed the indentation test itself by simulating the mechanical response of high‐density cellulose‐based materials. In the end, we have observed that pressboard, having initially a heterogeneous density distribution through the thickness, shows a shift in the densification to the more porous part after indentation. The densification maps of the simulated results are presented by comparing with the experimental results. A reasonable agreement is observed between the experimental and the simulated densifications patterns, which suggests that the proposed methodology can be used to predict densification also for other fibre‐based materials during manufacturing or in service loading.\",\"PeriodicalId\":51176,\"journal\":{\"name\":\"Strain\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strain\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/str.12442\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12442","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A micro‐CT investigation of densification in pressboard due to compression
As a non‐destructive inspection method, micro‐computed tomography has been employed for determining local properties of a cellulose‐based product, specifically pressboard. Furthermore, by utilizing the determined properties in a detailed numerical model, by means of a finite element analysis, we demonstrate a continuum anisotropic viscoelastic‐viscoplastic model. Through such a combination of non‐invasive experiments with accurate computations in mechanics, we attain a better understanding of materials and its structural integrity at a pre‐production stage increasing the success of the first prototype. In detail, this combination of micro‐computed tomography and finite element analysis improves accuracy in predicting materials response by taking into account the local material variations. Specifically, we have performed indentation tests and scanned the internal structure of the specimen for analysing the densification patterns within the material. Subsequently, we have used a developed material model for predicting the response of material to indentation. We have computed the indentation test itself by simulating the mechanical response of high‐density cellulose‐based materials. In the end, we have observed that pressboard, having initially a heterogeneous density distribution through the thickness, shows a shift in the densification to the more porous part after indentation. The densification maps of the simulated results are presented by comparing with the experimental results. A reasonable agreement is observed between the experimental and the simulated densifications patterns, which suggests that the proposed methodology can be used to predict densification also for other fibre‐based materials during manufacturing or in service loading.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.