图中的凸罗马控制函数

IF 1 Q1 MATHEMATICS
Rona Jane Fortosa, S. Canoy
{"title":"图中的凸罗马控制函数","authors":"Rona Jane Fortosa, S. Canoy","doi":"10.29020/nybg.ejpam.v16i3.4828","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph. A function $f:V(G)\\rightarrow \\{0,1,2\\}$ is a \\textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \\cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\\omega_{G}^{CvR}(f)$, is given by $\\omega_{G}^{CvR}(f)=\\sum_{v \\in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\\gamma_{CvR}(G)$, is called the \\textit{convex Roman domination number} of $G$. In this paper, we determine the convex Roman domination numbers of some graphs and give some realization results involving convex Roman domination, connected Roman domination, and convex domination numbers.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Roman Dominating Function in Graphs\",\"authors\":\"Rona Jane Fortosa, S. Canoy\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected graph. A function $f:V(G)\\\\rightarrow \\\\{0,1,2\\\\}$ is a \\\\textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \\\\cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\\\\omega_{G}^{CvR}(f)$, is given by $\\\\omega_{G}^{CvR}(f)=\\\\sum_{v \\\\in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\\\\gamma_{CvR}(G)$, is called the \\\\textit{convex Roman domination number} of $G$. In this paper, we determine the convex Roman domination numbers of some graphs and give some realization results involving convex Roman domination, connected Roman domination, and convex domination numbers.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个连通图。函数$f:V(G)\rightarrow\{0,1,2\}$是一个\textit{凸罗马支配函数}(或CvRDF),如果$f(u)=0$的每个顶点$u$与$f(V)=2$和$V_1\cup V_2$是凸的至少一个顶点$V$相邻。由$\omega_{G}^{CvR}(f)$表示的凸罗马支配函数$f$的权重由v(G)}f(v)$中的$\omega _{G}^{CvR}(f)=\sum_{v\给出。$G$上CvRDF的最小权重,用$\gamma_{CvR}(G)$表示,称为$G$的\textit{凸罗马支配数}。在本文中,我们确定了一些图的凸罗马控制数,并给出了一些关于凸罗马控制、连通罗马控制和凸控制数的实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex Roman Dominating Function in Graphs
Let $G$ be a connected graph. A function $f:V(G)\rightarrow \{0,1,2\}$ is a \textit{convex Roman dominating function} (or CvRDF) if every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$ and $V_1 \cup V_2$ is convex. The weight of a convex Roman dominating function $f$, denoted by $\omega_{G}^{CvR}(f)$, is given by $\omega_{G}^{CvR}(f)=\sum_{v \in V(G)}f(v)$. The minimum weight of a CvRDF on $G$, denoted by $\gamma_{CvR}(G)$, is called the \textit{convex Roman domination number} of $G$. In this paper, we determine the convex Roman domination numbers of some graphs and give some realization results involving convex Roman domination, connected Roman domination, and convex domination numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信