MHD Oldroyd-B流体速度和温度梯度传热传质的分形研究

IF 1.1 Q2 MATHEMATICS, APPLIED
N. Iftikhar, S. T. Saeed, M. Riaz
{"title":"MHD Oldroyd-B流体速度和温度梯度传热传质的分形研究","authors":"N. Iftikhar, S. T. Saeed, M. Riaz","doi":"10.22034/CMDE.2021.39703.1739","DOIUrl":null,"url":null,"abstract":"This study explores the time-dependent convective flow of MHD Oldroyd-B fluid under the effect of ramped wall velocity and temperature. The flow is confined to an infinite vertical plate embedded in a permeable surface with the impact of heat generation and thermal radiation. Solutions of velocity, temperature, and concentration are derived symmetrically by applying non-dimensional parameters along with Laplace transformation $(LT)$ and numerical inversion algorithm. Graphical results for different physical constraints are produced for the velocity, temperature, and concentration profiles. Velocity and temperature profile decrease by increasing the effective Prandtl number. The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity. Velocity is decreasing for $kappa$, $M$, $Pr_{reff,}$ and $Sc$ while increasing for $G_{r}$ and $G_{c}$. Temperature is an increasing function of the fractional parameter. Additionally, Atangana-Baleanu $(ABC)$ model is good to explain the dynamics of fluid with better memory effect as compared to other fractional operators.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fractional study on heat and mass transfer of MHD Oldroyd-B fluid with ramped velocity and temperature\",\"authors\":\"N. Iftikhar, S. T. Saeed, M. Riaz\",\"doi\":\"10.22034/CMDE.2021.39703.1739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the time-dependent convective flow of MHD Oldroyd-B fluid under the effect of ramped wall velocity and temperature. The flow is confined to an infinite vertical plate embedded in a permeable surface with the impact of heat generation and thermal radiation. Solutions of velocity, temperature, and concentration are derived symmetrically by applying non-dimensional parameters along with Laplace transformation $(LT)$ and numerical inversion algorithm. Graphical results for different physical constraints are produced for the velocity, temperature, and concentration profiles. Velocity and temperature profile decrease by increasing the effective Prandtl number. The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity. Velocity is decreasing for $kappa$, $M$, $Pr_{reff,}$ and $Sc$ while increasing for $G_{r}$ and $G_{c}$. Temperature is an increasing function of the fractional parameter. Additionally, Atangana-Baleanu $(ABC)$ model is good to explain the dynamics of fluid with better memory effect as compared to other fractional operators.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.39703.1739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.39703.1739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

本研究探讨了在斜壁速度和温度影响下MHD Oldroyd-B流体的时间相关对流。在产生热量和热辐射的影响下,流动被限制在嵌入可渗透表面的无限垂直板中。通过应用无量纲参数以及拉普拉斯变换$(LT)$和数值反演算法,对称地导出了速度、温度和浓度的解。对于速度、温度和浓度分布,产生了不同物理约束的图形结果。速度和温度分布随有效普朗特数的增加而减小。有效普朗特数的存在可能反映了动量厚度的控制和热导率的增大。速度在$kappa$、$M$、$Pr_{reff、}$和$Sc$中下降,而在$G_{r}$和$G_{c}$中增加。温度是分数参数的递增函数。此外,与其他分数算子相比,Atangana-Baleanu$(ABC)$模型以更好的记忆效应很好地解释了流体的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional study on heat and mass transfer of MHD Oldroyd-B fluid with ramped velocity and temperature
This study explores the time-dependent convective flow of MHD Oldroyd-B fluid under the effect of ramped wall velocity and temperature. The flow is confined to an infinite vertical plate embedded in a permeable surface with the impact of heat generation and thermal radiation. Solutions of velocity, temperature, and concentration are derived symmetrically by applying non-dimensional parameters along with Laplace transformation $(LT)$ and numerical inversion algorithm. Graphical results for different physical constraints are produced for the velocity, temperature, and concentration profiles. Velocity and temperature profile decrease by increasing the effective Prandtl number. The existence of an effective Prandtl number may reflect the control of the thickness of momentum and enlargement of thermal conductivity. Velocity is decreasing for $kappa$, $M$, $Pr_{reff,}$ and $Sc$ while increasing for $G_{r}$ and $G_{c}$. Temperature is an increasing function of the fractional parameter. Additionally, Atangana-Baleanu $(ABC)$ model is good to explain the dynamics of fluid with better memory effect as compared to other fractional operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信