Cayley拓扑和粗几何中的群逼近,第二部分:纤维粗嵌入

Pub Date : 2018-04-27 DOI:10.1515/agms-2019-0005
M. Mimura, Hiroki Sako
{"title":"Cayley拓扑和粗几何中的群逼近,第二部分:纤维粗嵌入","authors":"M. Mimura, Hiroki Sako","doi":"10.1515/agms-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union admits a fibred coarse embedding into a Hilbert space (as a disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main results with constructions of Osajda and Arzhantseva–Osajda, we construct two systems of markings of a certain sequence of finite groups with two opposite extreme behaviors of the resulting two disjoint unions: With respect to one marking, the space has property A. On the other hand, with respect to the other, the space does not admit fibred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0005","citationCount":"3","resultStr":"{\"title\":\"Group Approximation in Cayley Topology and Coarse Geometry, Part II: Fibred Coarse Embeddings\",\"authors\":\"M. Mimura, Hiroki Sako\",\"doi\":\"10.1515/agms-2019-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union admits a fibred coarse embedding into a Hilbert space (as a disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main results with constructions of Osajda and Arzhantseva–Osajda, we construct two systems of markings of a certain sequence of finite groups with two opposite extreme behaviors of the resulting two disjoint unions: With respect to one marking, the space has property A. On the other hand, with respect to the other, the space does not admit fibred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2019-0005\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2019-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本系列的目的是通过标记群空间中Cayley累积点的群性质来研究可调和群的Cayley图的不相交并集的度量几何性质。在第二部分中,我们证明了不相交并集允许纤维粗嵌入到Hilbert空间中(作为不相交并并集),当且仅当序列在标记群空间中的Cayley边界是一致的a-T-可调的。我们进一步将这个结果推广到具有其他目标空间的结果。通过将我们的主要结果与Osajda和Arzhantseva–Osajda的构造相结合,我们构造了一个有限群序列的两个标记系统,这两个标记具有由此产生的两个不相交并集的两个相反的极端行为:关于一个标记,空间具有性质a。另一方面,关于另一个,该空间不允许将纤维粗嵌入到具有非平凡类型的Banach空间(例如一致凸Banach空间)或Hadamard流形中;此外,Cayley极限群是不精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Group Approximation in Cayley Topology and Coarse Geometry, Part II: Fibred Coarse Embeddings
Abstract The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union admits a fibred coarse embedding into a Hilbert space (as a disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main results with constructions of Osajda and Arzhantseva–Osajda, we construct two systems of markings of a certain sequence of finite groups with two opposite extreme behaviors of the resulting two disjoint unions: With respect to one marking, the space has property A. On the other hand, with respect to the other, the space does not admit fibred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信