{"title":"局部可数拟pmp图的点态遍历定理","authors":"A. Tserunyan","doi":"10.3934/jmd.2022019","DOIUrl":null,"url":null,"abstract":"We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, analogous to pointwise ergodic theorems for group actions, replacing the group with a Schreier graph of the action. For any quasi-pmp graph, the theorem gives an increasing sequence of Borel subgraphs with finite connected components along which the averages of $L^1$ functions converge to their expectations. Equivalently, it states that any (not necessarily pmp) locally countable Borel graph on a standard probability space contains an ergodic hyperfinite subgraph. \nThe pmp version of this theorem was first proven by R. Tucker-Drob using probabilistic methods. Our proof is different: it is descriptive set theoretic and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant, a method of producing finite equivalence subrelations with large domain, and a simple method of exploiting nonamenability of a measured graph. The non-pmp setting additionally requires a new gadget for analyzing the interplay between the underlying cocycle and the graph.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pointwise ergodic theorem for locally countable quasi-pmp graphs\",\"authors\":\"A. Tserunyan\",\"doi\":\"10.3934/jmd.2022019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, analogous to pointwise ergodic theorems for group actions, replacing the group with a Schreier graph of the action. For any quasi-pmp graph, the theorem gives an increasing sequence of Borel subgraphs with finite connected components along which the averages of $L^1$ functions converge to their expectations. Equivalently, it states that any (not necessarily pmp) locally countable Borel graph on a standard probability space contains an ergodic hyperfinite subgraph. \\nThe pmp version of this theorem was first proven by R. Tucker-Drob using probabilistic methods. Our proof is different: it is descriptive set theoretic and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant, a method of producing finite equivalence subrelations with large domain, and a simple method of exploiting nonamenability of a measured graph. The non-pmp setting additionally requires a new gadget for analyzing the interplay between the underlying cocycle and the graph.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022019\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022019","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pointwise ergodic theorem for locally countable quasi-pmp graphs
We prove a pointwise ergodic theorem for quasi-probability-measure-preserving (quasi-pmp) locally countable measurable graphs, analogous to pointwise ergodic theorems for group actions, replacing the group with a Schreier graph of the action. For any quasi-pmp graph, the theorem gives an increasing sequence of Borel subgraphs with finite connected components along which the averages of $L^1$ functions converge to their expectations. Equivalently, it states that any (not necessarily pmp) locally countable Borel graph on a standard probability space contains an ergodic hyperfinite subgraph.
The pmp version of this theorem was first proven by R. Tucker-Drob using probabilistic methods. Our proof is different: it is descriptive set theoretic and applies more generally to quasi-pmp graphs. Among other things, it involves introducing a graph invariant, a method of producing finite equivalence subrelations with large domain, and a simple method of exploiting nonamenability of a measured graph. The non-pmp setting additionally requires a new gadget for analyzing the interplay between the underlying cocycle and the graph.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.