基于粗粒度分子动力学模拟的土壤水分凝胶网络结构与吸水性能研究

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY
Haifei Jiang
{"title":"基于粗粒度分子动力学模拟的土壤水分凝胶网络结构与吸水性能研究","authors":"Haifei Jiang","doi":"10.4028/p-r8o1xc","DOIUrl":null,"url":null,"abstract":"With the wide application of hydrogel materials in agriculture, forestry, flexible electronics, electronic information engineering, environmental detection, flexible electronics, information science, technology and so on, the development of various new functional hydrogel materials has gradually become one of the research hotspots. At present, the research on hydrogel materials is mainly focused on the preparation of various functional hydrogels by experimental methods, there is no fundamental understanding of the relationship between the “stimulus-response” and its inner microstructures. In this paper, the author uses the molecular dynamics simulation method to study the evolution of the hydrogel’s microscopic network structure, the relationship between microstructure and water absorption of hydrogels in the processes of water swelling and “stimulus-response”. The next generation of new super absorbent, high toughness, high strength and other functional hydrogels could be synthesized by the guide of this study, and these new hydrogels have a promising future to apply in new fields of technology such as flexible electronics, and biological medicine.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":"63 1","pages":"1 - 12"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Structure and Water Absorption of Soil Moisture Gel by Coarse-Grained Molecular Dynamics Simulations\",\"authors\":\"Haifei Jiang\",\"doi\":\"10.4028/p-r8o1xc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide application of hydrogel materials in agriculture, forestry, flexible electronics, electronic information engineering, environmental detection, flexible electronics, information science, technology and so on, the development of various new functional hydrogel materials has gradually become one of the research hotspots. At present, the research on hydrogel materials is mainly focused on the preparation of various functional hydrogels by experimental methods, there is no fundamental understanding of the relationship between the “stimulus-response” and its inner microstructures. In this paper, the author uses the molecular dynamics simulation method to study the evolution of the hydrogel’s microscopic network structure, the relationship between microstructure and water absorption of hydrogels in the processes of water swelling and “stimulus-response”. The next generation of new super absorbent, high toughness, high strength and other functional hydrogels could be synthesized by the guide of this study, and these new hydrogels have a promising future to apply in new fields of technology such as flexible electronics, and biological medicine.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":\"63 1\",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-r8o1xc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-r8o1xc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着水凝胶材料在农业、林业、柔性电子、电子信息工程、环境检测、柔性电子和信息科学技术等领域的广泛应用,开发各种新型功能水凝胶材料逐渐成为研究热点之一。目前,对水凝胶材料的研究主要集中在通过实验方法制备各种功能水凝胶上,对“刺激反应”与其内部微观结构之间的关系还没有基本的了解。在本文中,作者使用分子动力学模拟方法研究了水凝胶微观网络结构的演变,以及水凝胶在水溶胀和“刺激反应”过程中微观结构与吸水率的关系。在本研究的指导下,可以合成下一代新型高吸水性、高韧性、高强度等功能水凝胶,这些新型水凝胶在柔性电子、生物医药等新技术领域有着广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Structure and Water Absorption of Soil Moisture Gel by Coarse-Grained Molecular Dynamics Simulations
With the wide application of hydrogel materials in agriculture, forestry, flexible electronics, electronic information engineering, environmental detection, flexible electronics, information science, technology and so on, the development of various new functional hydrogel materials has gradually become one of the research hotspots. At present, the research on hydrogel materials is mainly focused on the preparation of various functional hydrogels by experimental methods, there is no fundamental understanding of the relationship between the “stimulus-response” and its inner microstructures. In this paper, the author uses the molecular dynamics simulation method to study the evolution of the hydrogel’s microscopic network structure, the relationship between microstructure and water absorption of hydrogels in the processes of water swelling and “stimulus-response”. The next generation of new super absorbent, high toughness, high strength and other functional hydrogels could be synthesized by the guide of this study, and these new hydrogels have a promising future to apply in new fields of technology such as flexible electronics, and biological medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
14.30%
发文量
62
期刊介绍: "International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信