{"title":"时间尺度上具有Delta-HK和Delta-HKP积分的混合型积分微分方程","authors":"A. Sikorska-Nowak","doi":"10.58997/ejde.2023.29","DOIUrl":null,"url":null,"abstract":"In this article we prove the existence of solutions to the integrodifferential equation of mixed type \\begin{gather*}x^\\Delta (t)=f \\Big( t,x(t), \\int_0^t k_1 (t,s)g(s,x(s)) \\Delta s, \\int_0^a k_2(t,s)h(s,x(s)) \\Delta s \\Big),\\cr x(0)=x_0, \\quad x_0 \\in E,\\; t \\in I_a=[0,a] \\cap \\mathbb{T},\\; a>0, \\end{gather*} where \\(\\mathbb{T}\\) denotes a time scale (nonempty closed subset of real numbers \\(\\mathbb{R}\\)), \\(I_a\\) is a time scale interval. In the first part of this paper functions \\(f,g,h\\) are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals\",\"authors\":\"A. Sikorska-Nowak\",\"doi\":\"10.58997/ejde.2023.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove the existence of solutions to the integrodifferential equation of mixed type \\\\begin{gather*}x^\\\\Delta (t)=f \\\\Big( t,x(t), \\\\int_0^t k_1 (t,s)g(s,x(s)) \\\\Delta s, \\\\int_0^a k_2(t,s)h(s,x(s)) \\\\Delta s \\\\Big),\\\\cr x(0)=x_0, \\\\quad x_0 \\\\in E,\\\\; t \\\\in I_a=[0,a] \\\\cap \\\\mathbb{T},\\\\; a>0, \\\\end{gather*} where \\\\(\\\\mathbb{T}\\\\) denotes a time scale (nonempty closed subset of real numbers \\\\(\\\\mathbb{R}\\\\)), \\\\(I_a\\\\) is a time scale interval. In the first part of this paper functions \\\\(f,g,h\\\\) are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.29\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.29","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文证明了混合型begin{collecte*}x^\Delta(t)=f\Big(t,x(t),\int_0^tk_1(t,s)g(s,x(s))\Delta s,\int:0^a_2(t、s)h(s,x(s),\Delta s\Big),\cr x(0)=x_0,\quad x_0\在E,\中解的存在性;t\ in I_a=[0,a]\cap\mathbb{t},\;a> 0,\end{collecte*},其中\(\mathbb{T}\)表示时间尺度(实数的非空闭子集\(\math bb{R})),\(I_a\)是时间尺度间隔。在本文的第一部分中,函数\(f,g,h\)是Banach空间E中具有值的Caratheodory函数,并且积分是在Henstock-Korzweil-delta积分的意义上取的,它推广了Henstock-Kurzweil积分。在第二部分中,f,g,h,x是弱弱序连续函数,积分取Henstock-Kurzweil-Pettis-delta积分的意义。此外,函数f,g,h满足一些边界条件和用非紧测度表示的条件。
Integrodifferential equations of mixed type on time scales with Delta-HK and Delta-HKP integrals
In this article we prove the existence of solutions to the integrodifferential equation of mixed type \begin{gather*}x^\Delta (t)=f \Big( t,x(t), \int_0^t k_1 (t,s)g(s,x(s)) \Delta s, \int_0^a k_2(t,s)h(s,x(s)) \Delta s \Big),\cr x(0)=x_0, \quad x_0 \in E,\; t \in I_a=[0,a] \cap \mathbb{T},\; a>0, \end{gather*} where \(\mathbb{T}\) denotes a time scale (nonempty closed subset of real numbers \(\mathbb{R}\)), \(I_a\) is a time scale interval. In the first part of this paper functions \(f,g,h\) are Caratheodory functions with values in a Banach space E and integrals are taken in the sense of Henstock-Kurzweil delta integrals, which generalizes the Henstock-Kurzweil integrals. In the second part f, g, h, x are weakly-weakly sequentially continuous functions and integrals are taken in the sense of Henstock-Kurzweil-Pettis delta integrals. Additionally, functions f, g, h satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.