解释不可解释的预测因子:核方法、Shtarkov解和随机森林

IF 0.7 Q3 STATISTICS & PROBABILITY
Tri Le, B. Clarke
{"title":"解释不可解释的预测因子:核方法、Shtarkov解和随机森林","authors":"Tri Le, B. Clarke","doi":"10.1080/24754269.2021.1974157","DOIUrl":null,"url":null,"abstract":"Many of the best predictors for complex problems are typically regarded as hard to interpret physically. These include kernel methods, Shtarkov solutions, and random forests. We show that, despite the inability to interpret these three predictors to infinite precision, they can be asymptotically approximated and admit conceptual interpretations in terms of their mathematical/statistical properties. The resulting expressions can be in terms of polynomials, basis elements, or other functions that an analyst may regard as interpretable.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"10 - 28"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpreting uninterpretable predictors: kernel methods, Shtarkov solutions, and random forests\",\"authors\":\"Tri Le, B. Clarke\",\"doi\":\"10.1080/24754269.2021.1974157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the best predictors for complex problems are typically regarded as hard to interpret physically. These include kernel methods, Shtarkov solutions, and random forests. We show that, despite the inability to interpret these three predictors to infinite precision, they can be asymptotically approximated and admit conceptual interpretations in terms of their mathematical/statistical properties. The resulting expressions can be in terms of polynomials, basis elements, or other functions that an analyst may regard as interpretable.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"6 1\",\"pages\":\"10 - 28\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2021.1974157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1974157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

许多复杂问题的最佳预测因子通常被认为很难从物理上解释。其中包括核方法、Shtarkov解和随机森林。我们表明,尽管无法无限精确地解释这三个预测因子,但它们可以渐近近似,并允许根据其数学/统计特性进行概念解释。所得到的表达式可以是多项式、基元或分析师可能认为可解释的其他函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting uninterpretable predictors: kernel methods, Shtarkov solutions, and random forests
Many of the best predictors for complex problems are typically regarded as hard to interpret physically. These include kernel methods, Shtarkov solutions, and random forests. We show that, despite the inability to interpret these three predictors to infinite precision, they can be asymptotically approximated and admit conceptual interpretations in terms of their mathematical/statistical properties. The resulting expressions can be in terms of polynomials, basis elements, or other functions that an analyst may regard as interpretable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信