构造具有指定几何极限的结

Pub Date : 2022-02-03 DOI:10.2140/pjm.2023.324.111
Urs Fuchs, J. Purcell, J. Stewart
{"title":"构造具有指定几何极限的结","authors":"Urs Fuchs, J. Purcell, J. Stewart","doi":"10.2140/pjm.2023.324.111","DOIUrl":null,"url":null,"abstract":"It is known that any tame hyperbolic 3-manifold with infinite volume and a single end is the geometric limit of a sequence of finite volume hyperbolic knot complements. Purcell and Souto showed that if the original manifold embeds in the 3-sphere, then such knots can be taken to lie in the 3-sphere. However, their proof was nonconstructive; no examples were produced. In this paper, we give a constructive proof in the geometrically finite case. That is, given a geometrically finite, tame hyperbolic 3-manifold with one end, we build an explicit family of knots whose complements converge to it geometrically. Our knots lie in the (topological) double of the original manifold. The construction generalises the class of fully augmented links to a Kleinian groups setting.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructing knots with specified geometric limits\",\"authors\":\"Urs Fuchs, J. Purcell, J. Stewart\",\"doi\":\"10.2140/pjm.2023.324.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that any tame hyperbolic 3-manifold with infinite volume and a single end is the geometric limit of a sequence of finite volume hyperbolic knot complements. Purcell and Souto showed that if the original manifold embeds in the 3-sphere, then such knots can be taken to lie in the 3-sphere. However, their proof was nonconstructive; no examples were produced. In this paper, we give a constructive proof in the geometrically finite case. That is, given a geometrically finite, tame hyperbolic 3-manifold with one end, we build an explicit family of knots whose complements converge to it geometrically. Our knots lie in the (topological) double of the original manifold. The construction generalises the class of fully augmented links to a Kleinian groups setting.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.324.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

已知任何具有无限体积和单端的驯服双曲3-流形都是有限体积双曲结补序列的几何极限。Purcell和Souto证明,如果原始流形嵌入到3-球体中,那么这样的结可以被认为位于3-球体中。然而,他们的证明是非结构性的;没有产生任何实例。本文给出了几何有限情形下的构造性证明。也就是说,给定一个具有一端的几何有限、温和的双曲3-流形,我们建立了一个节点的显式族,其补数在几何上收敛于它。我们的结位于原始流形的(拓扑)二重中。该构造将完全增广的链接类推广到Kleinian群的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Constructing knots with specified geometric limits
It is known that any tame hyperbolic 3-manifold with infinite volume and a single end is the geometric limit of a sequence of finite volume hyperbolic knot complements. Purcell and Souto showed that if the original manifold embeds in the 3-sphere, then such knots can be taken to lie in the 3-sphere. However, their proof was nonconstructive; no examples were produced. In this paper, we give a constructive proof in the geometrically finite case. That is, given a geometrically finite, tame hyperbolic 3-manifold with one end, we build an explicit family of knots whose complements converge to it geometrically. Our knots lie in the (topological) double of the original manifold. The construction generalises the class of fully augmented links to a Kleinian groups setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信