不稳定非线性分数阶薛定谔方程组合孤子解的分数阶导数动力学

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Bagheri, A. Khani
{"title":"不稳定非线性分数阶薛定谔方程组合孤子解的分数阶导数动力学","authors":"M. Bagheri, A. Khani","doi":"10.22034/CMDE.2021.40523.1766","DOIUrl":null,"url":null,"abstract":"In this article, a new version of the trial equation method is suggested. This method allows new exact solutions of the nonlinear partial differential equations. The developed method is applied to unstable nonlinear fractional-order Schr¨odinger equation in fractional time derivative form of order. Some exact solutions of the fractional-order fractional PDE are attained by employing the new powerful expansion approach using by beta-fractional derivatives which are used to get many solitary wave solutions by changing various parameters. New exact solutions are expressed with rational hyperbolic function solutions, rational trigonometric function solutions, 1-soliton solutions, dark soliton solitons, and rational function solutions. We can say that the unstable nonlinear Schr¨odinger equation exists I different dynamical behaviors. In addition, the physical behaviors of these new exact solution are given with two and three dimensional graphs.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of combined soliton solutions of unstable nonlinear fractional-order Schrodinger equation by beta-fractional derivative\",\"authors\":\"M. Bagheri, A. Khani\",\"doi\":\"10.22034/CMDE.2021.40523.1766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a new version of the trial equation method is suggested. This method allows new exact solutions of the nonlinear partial differential equations. The developed method is applied to unstable nonlinear fractional-order Schr¨odinger equation in fractional time derivative form of order. Some exact solutions of the fractional-order fractional PDE are attained by employing the new powerful expansion approach using by beta-fractional derivatives which are used to get many solitary wave solutions by changing various parameters. New exact solutions are expressed with rational hyperbolic function solutions, rational trigonometric function solutions, 1-soliton solutions, dark soliton solitons, and rational function solutions. We can say that the unstable nonlinear Schr¨odinger equation exists I different dynamical behaviors. In addition, the physical behaviors of these new exact solution are given with two and three dimensional graphs.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.40523.1766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.40523.1766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的试方程法。这种方法可以得到非线性偏微分方程新的精确解。将该方法应用于不稳定非线性分数阶阶Schr¨odinger方程的分数阶时间导数形式。利用利用β -分数阶导数的强大展开法,得到了分数阶分数阶偏微分方程的精确解。新的精确解用有理双曲函数解、有理三角函数解、1-孤子解、暗孤子孤子和有理函数解表示。我们可以说不稳定非线性Schr¨odinger方程存在不同的动力学行为。此外,还用二维和三维图形给出了新精确解的物理行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of combined soliton solutions of unstable nonlinear fractional-order Schrodinger equation by beta-fractional derivative
In this article, a new version of the trial equation method is suggested. This method allows new exact solutions of the nonlinear partial differential equations. The developed method is applied to unstable nonlinear fractional-order Schr¨odinger equation in fractional time derivative form of order. Some exact solutions of the fractional-order fractional PDE are attained by employing the new powerful expansion approach using by beta-fractional derivatives which are used to get many solitary wave solutions by changing various parameters. New exact solutions are expressed with rational hyperbolic function solutions, rational trigonometric function solutions, 1-soliton solutions, dark soliton solitons, and rational function solutions. We can say that the unstable nonlinear Schr¨odinger equation exists I different dynamical behaviors. In addition, the physical behaviors of these new exact solution are given with two and three dimensional graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信