{"title":"铁屑在减少湖泊沉积物磷释放中的应用","authors":"P. Natarajan, J. Gulliver, W. Arnold","doi":"10.1080/10402381.2020.1862371","DOIUrl":null,"url":null,"abstract":"Abstract Natarajan P, Gulliver JS, Arnold WA. 2021. Iron filings application to reduce lake sediment phosphorus release. Lake Reserv Manage. 27:143–159. Surface water impairments due to excess phosphorus loading from the watershed and internal recycling from sediments have been reported worldwide. This study investigated the application of iron metal filings to lake sediments as a method to control sediment phosphorus release. Using batch studies, a zero-valent iron filings material was selected for laboratory dosing experiments with lake sediment cores. Iron filings doses of 0 (control), 0.01, 0.1, and 1 g/cm2 were added to sediment cores collected from a eutrophic lake in Minnesota, United States, to determine the impacts of iron addition on the oxic and anoxic phosphate (PO4-P) flux at 20 C and 10 C in the laboratory. Under oxic conditions, PO4-P release did not occur from the sediments, and low water column PO4-P concentrations were maintained in the iron-dosed and control cores. After switching to anoxic conditions, the 0.1 and 1 g/cm2 iron doses continued to reduce or fully prevent sediment PO4-P flux. The enhanced supply of iron in the sediments was found to reduce the porewater PO4-P, resulting in no apparent PO4-P diffusion across the sediment–water interface and low PO4-P in the overlying water under oxic and anoxic conditions. Further evaluation using in situ experiments is needed to assess the effectiveness of iron filings addition in sequestering sediment phosphorus under natural conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10402381.2020.1862371","citationCount":"1","resultStr":"{\"title\":\"Iron filings application to reduce lake sediment phosphorus release\",\"authors\":\"P. Natarajan, J. Gulliver, W. Arnold\",\"doi\":\"10.1080/10402381.2020.1862371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Natarajan P, Gulliver JS, Arnold WA. 2021. Iron filings application to reduce lake sediment phosphorus release. Lake Reserv Manage. 27:143–159. Surface water impairments due to excess phosphorus loading from the watershed and internal recycling from sediments have been reported worldwide. This study investigated the application of iron metal filings to lake sediments as a method to control sediment phosphorus release. Using batch studies, a zero-valent iron filings material was selected for laboratory dosing experiments with lake sediment cores. Iron filings doses of 0 (control), 0.01, 0.1, and 1 g/cm2 were added to sediment cores collected from a eutrophic lake in Minnesota, United States, to determine the impacts of iron addition on the oxic and anoxic phosphate (PO4-P) flux at 20 C and 10 C in the laboratory. Under oxic conditions, PO4-P release did not occur from the sediments, and low water column PO4-P concentrations were maintained in the iron-dosed and control cores. After switching to anoxic conditions, the 0.1 and 1 g/cm2 iron doses continued to reduce or fully prevent sediment PO4-P flux. The enhanced supply of iron in the sediments was found to reduce the porewater PO4-P, resulting in no apparent PO4-P diffusion across the sediment–water interface and low PO4-P in the overlying water under oxic and anoxic conditions. Further evaluation using in situ experiments is needed to assess the effectiveness of iron filings addition in sequestering sediment phosphorus under natural conditions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10402381.2020.1862371\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10402381.2020.1862371\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10402381.2020.1862371","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Iron filings application to reduce lake sediment phosphorus release
Abstract Natarajan P, Gulliver JS, Arnold WA. 2021. Iron filings application to reduce lake sediment phosphorus release. Lake Reserv Manage. 27:143–159. Surface water impairments due to excess phosphorus loading from the watershed and internal recycling from sediments have been reported worldwide. This study investigated the application of iron metal filings to lake sediments as a method to control sediment phosphorus release. Using batch studies, a zero-valent iron filings material was selected for laboratory dosing experiments with lake sediment cores. Iron filings doses of 0 (control), 0.01, 0.1, and 1 g/cm2 were added to sediment cores collected from a eutrophic lake in Minnesota, United States, to determine the impacts of iron addition on the oxic and anoxic phosphate (PO4-P) flux at 20 C and 10 C in the laboratory. Under oxic conditions, PO4-P release did not occur from the sediments, and low water column PO4-P concentrations were maintained in the iron-dosed and control cores. After switching to anoxic conditions, the 0.1 and 1 g/cm2 iron doses continued to reduce or fully prevent sediment PO4-P flux. The enhanced supply of iron in the sediments was found to reduce the porewater PO4-P, resulting in no apparent PO4-P diffusion across the sediment–water interface and low PO4-P in the overlying water under oxic and anoxic conditions. Further evaluation using in situ experiments is needed to assess the effectiveness of iron filings addition in sequestering sediment phosphorus under natural conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.