{"title":"辐射和化学反应对变温度和质量扩散垂直板MHD流动的影响","authors":"U. S. Rajput, G. Kumar","doi":"10.3329/jname.v16i2.29526","DOIUrl":null,"url":null,"abstract":"This research investigates the effects of radiation, chemical reaction and porosity of the medium on unsteady flow of a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field. The plate temperature and the concentration level near the plate increase linearly with time. The fluid model under consideration has been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, reasonable sets of the values of the parameters have been considered. The numerical data obtained is discussed with the help of graphs and tables. The numerical values obtained for skin-friction, Sherwood number and Nusselt number have been tabulated. It is found that the velocity of fluid increases when the values of permeability parameter, acceleration parameter and radiation parameter are increased. But trend is reversed with the chemical reaction parameter. It means that the velocity decreases when the chemical reaction parameter is increased.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/jname.v16i2.29526","citationCount":"16","resultStr":"{\"title\":\"Effects of radiation and chemical reaction on MHD flow past a vertical plate with variable temperature and mass diffusion\",\"authors\":\"U. S. Rajput, G. Kumar\",\"doi\":\"10.3329/jname.v16i2.29526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the effects of radiation, chemical reaction and porosity of the medium on unsteady flow of a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field. The plate temperature and the concentration level near the plate increase linearly with time. The fluid model under consideration has been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, reasonable sets of the values of the parameters have been considered. The numerical data obtained is discussed with the help of graphs and tables. The numerical values obtained for skin-friction, Sherwood number and Nusselt number have been tabulated. It is found that the velocity of fluid increases when the values of permeability parameter, acceleration parameter and radiation parameter are increased. But trend is reversed with the chemical reaction parameter. It means that the velocity decreases when the chemical reaction parameter is increased.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/jname.v16i2.29526\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v16i2.29526\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v16i2.29526","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of radiation and chemical reaction on MHD flow past a vertical plate with variable temperature and mass diffusion
This research investigates the effects of radiation, chemical reaction and porosity of the medium on unsteady flow of a viscous, incompressible and electrically conducting fluid past an exponentially accelerated vertical plate with variable wall temperature and mass diffusion in the presence of transversely applied uniform magnetic field. The plate temperature and the concentration level near the plate increase linearly with time. The fluid model under consideration has been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, reasonable sets of the values of the parameters have been considered. The numerical data obtained is discussed with the help of graphs and tables. The numerical values obtained for skin-friction, Sherwood number and Nusselt number have been tabulated. It is found that the velocity of fluid increases when the values of permeability parameter, acceleration parameter and radiation parameter are increased. But trend is reversed with the chemical reaction parameter. It means that the velocity decreases when the chemical reaction parameter is increased.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.