Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro, K. Nakata, Tomomi Matsui
{"title":"消除多重共线性的最佳子集选择","authors":"Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro, K. Nakata, Tomomi Matsui","doi":"10.15807/JORSJ.60.321","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"60 1","pages":"321-336"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.60.321","citationCount":"37","resultStr":"{\"title\":\"BEST SUBSET SELECTION FOR ELIMINATING MULTICOLLINEARITY\",\"authors\":\"Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro, K. Nakata, Tomomi Matsui\",\"doi\":\"10.15807/JORSJ.60.321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\"60 1\",\"pages\":\"321-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15807/JORSJ.60.321\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/JORSJ.60.321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.60.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
BEST SUBSET SELECTION FOR ELIMINATING MULTICOLLINEARITY
This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.
期刊介绍:
The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.