消除多重共线性的最佳子集选择

Q4 Decision Sciences
Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro, K. Nakata, Tomomi Matsui
{"title":"消除多重共线性的最佳子集选择","authors":"Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro, K. Nakata, Tomomi Matsui","doi":"10.15807/JORSJ.60.321","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"60 1","pages":"321-336"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.60.321","citationCount":"37","resultStr":"{\"title\":\"BEST SUBSET SELECTION FOR ELIMINATING MULTICOLLINEARITY\",\"authors\":\"Ryuta Tamura, Ken Kobayashi, Yuichi Takano, Ryuhei Miyashiro, K. Nakata, Tomomi Matsui\",\"doi\":\"10.15807/JORSJ.60.321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\"60 1\",\"pages\":\"321-336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15807/JORSJ.60.321\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/JORSJ.60.321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.60.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 37

摘要

提出了一种消除线性回归模型多重共线性的方法。具体来说,我们选择解释变量的最佳子集,服从所选变量相关矩阵条件数的上界。我们首先开发了一种切割平面算法,该算法通过迭代地将有效不等式附加到混合整数二次优化问题中来近似条件数约束。我们还设计了一个混合整数半定优化公式,用于条件数约束下的最优子集选择。计算结果表明,在子集选择方面,我们的切割平面算法往往比局部搜索算法得到的解质量更好。此外,当候选解释变量数量较少时,通过优化公式进行的子集选择成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BEST SUBSET SELECTION FOR ELIMINATING MULTICOLLINEARITY
This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信