用适三重拉普拉斯变换分解法求解非线性偏微分方程

IF 1.4 Q2 MATHEMATICS, APPLIED
S. A. Bhanotar, Mohammed K. A. Kaabar
{"title":"用适三重拉普拉斯变换分解法求解非线性偏微分方程","authors":"S. A. Bhanotar, Mohammed K. A. Kaabar","doi":"10.1155/2021/9988160","DOIUrl":null,"url":null,"abstract":"In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analytical Solutions for the Nonlinear Partial Differential Equations Using the Conformable Triple Laplace Transform Decomposition Method\",\"authors\":\"S. A. Bhanotar, Mohammed K. A. Kaabar\",\"doi\":\"10.1155/2021/9988160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/9988160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/9988160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 23

摘要

本文研究了求解非线性偏微分方程的一种新的解析方法。这种方法被称为三重拉普拉斯变换分解方法。该方法在保形导数的意义上得到了推广。讨论了有关该方法的重要结果和定理。提出了一种求解三维线性和非线性偏微分方程的新算法。此外,通过实例验证了该算法的性能。该方法在保形导数意义上对求解非线性偏微分方程具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Solutions for the Nonlinear Partial Differential Equations Using the Conformable Triple Laplace Transform Decomposition Method
In this paper, a novel analytical method for solving nonlinear partial differential equations is studied. This method is known as triple Laplace transform decomposition method. This method is generalized in the sense of conformable derivative. Important results and theorems concerning this method are discussed. A new algorithm is proposed to solve linear and nonlinear partial differential equations in three dimensions. Moreover, some examples are provided to verify the performance of the proposed algorithm. This method presents a wide applicability to solve nonlinear partial differential equations in the sense of conformable derivative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信