医学图像噪声中ROI的自动提取

S. Renukalatha, K. Suresh
{"title":"医学图像噪声中ROI的自动提取","authors":"S. Renukalatha, K. Suresh","doi":"10.21917/IJIVP.2017.0215","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of medical images is pivotal in medical image analysis as it favors the detection and quantification of abnormalities present in human anatomical structures. Since medical images are complex and sometimes noisy, effective extraction of the regions of abnormalities is a tedious process. Many semi-automatic segmentation algorithms with appreciable segmentation accuracy do exist in literature. However, these techniques are iterative, computationally expensive, involve human intervention demanding initial parameter settings and moreover, each one of them is specific to a particular modality. In addition, presence of noise further degrades the quality of the processed image. There is no general algorithm to extract the key regions from all types of noisy medical images. This paper proposes an automatic Region of Interest (ROI) extraction algorithm to detect the important regions in noisy medical images of different modalities using statistical moments. The proposed approach estimates an optimal threshold value automatically using statistical moments through histogram decomposition technique. Initially, the medical image database is preprocessed followed by ROI extraction and the performance of the proposed approach is compared with other techniques to verify its robustness.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":"7 1","pages":"1505-1514"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"AUTOMATIC ROI EXTRACTION IN NOISY MEDICAL IMAGES\",\"authors\":\"S. Renukalatha, K. Suresh\",\"doi\":\"10.21917/IJIVP.2017.0215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of medical images is pivotal in medical image analysis as it favors the detection and quantification of abnormalities present in human anatomical structures. Since medical images are complex and sometimes noisy, effective extraction of the regions of abnormalities is a tedious process. Many semi-automatic segmentation algorithms with appreciable segmentation accuracy do exist in literature. However, these techniques are iterative, computationally expensive, involve human intervention demanding initial parameter settings and moreover, each one of them is specific to a particular modality. In addition, presence of noise further degrades the quality of the processed image. There is no general algorithm to extract the key regions from all types of noisy medical images. This paper proposes an automatic Region of Interest (ROI) extraction algorithm to detect the important regions in noisy medical images of different modalities using statistical moments. The proposed approach estimates an optimal threshold value automatically using statistical moments through histogram decomposition technique. Initially, the medical image database is preprocessed followed by ROI extraction and the performance of the proposed approach is compared with other techniques to verify its robustness.\",\"PeriodicalId\":30615,\"journal\":{\"name\":\"ICTACT Journal on Image and Video Processing\",\"volume\":\"7 1\",\"pages\":\"1505-1514\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICTACT Journal on Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21917/IJIVP.2017.0215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/IJIVP.2017.0215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

医学图像的准确分割是医学图像分析的关键,因为它有利于检测和量化人体解剖结构中存在的异常。由于医学图像是复杂的,有时有噪声,有效地提取异常区域是一个繁琐的过程。文献中确实存在许多分割精度较高的半自动分割算法。然而,这些技术是迭代的,计算成本高,涉及需要初始参数设置的人为干预,而且每一种技术都是特定于特定模态的。此外,噪声的存在进一步降低了处理后图像的质量。目前还没有通用的算法来从各种类型的噪声医学图像中提取关键区域。本文提出了一种自动提取感兴趣区域的算法,利用统计矩检测不同模态的医学图像中的重要区域。该方法通过直方图分解技术,利用统计矩自动估计最优阈值。首先对医学图像数据库进行预处理,然后进行ROI提取,并将该方法的性能与其他技术进行比较,验证其鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AUTOMATIC ROI EXTRACTION IN NOISY MEDICAL IMAGES
Accurate segmentation of medical images is pivotal in medical image analysis as it favors the detection and quantification of abnormalities present in human anatomical structures. Since medical images are complex and sometimes noisy, effective extraction of the regions of abnormalities is a tedious process. Many semi-automatic segmentation algorithms with appreciable segmentation accuracy do exist in literature. However, these techniques are iterative, computationally expensive, involve human intervention demanding initial parameter settings and moreover, each one of them is specific to a particular modality. In addition, presence of noise further degrades the quality of the processed image. There is no general algorithm to extract the key regions from all types of noisy medical images. This paper proposes an automatic Region of Interest (ROI) extraction algorithm to detect the important regions in noisy medical images of different modalities using statistical moments. The proposed approach estimates an optimal threshold value automatically using statistical moments through histogram decomposition technique. Initially, the medical image database is preprocessed followed by ROI extraction and the performance of the proposed approach is compared with other techniques to verify its robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信