FURSTENBERG猜想的一个迹刻画

Pub Date : 2023-04-10 DOI:10.4153/s0008439523000693
Chris Bruce, Eduardo Scarparo
{"title":"FURSTENBERG猜想的一个迹刻画","authors":"Chris Bruce, Eduardo Scarparo","doi":"10.4153/s0008439523000693","DOIUrl":null,"url":null,"abstract":"We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers $p$ and $q$, we show that Furstenberg's $\\times p,\\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\\mathbb{Z}[\\frac{1}{pq}]\\rtimes\\mathbb{Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\\mathbb{Z}[\\frac{1}{pq}]\\rtimes\\mathbb{Z}^2)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A TRACIAL CHARACTERIZATION OF FURSTENBERG’S CONJECTURE\",\"authors\":\"Chris Bruce, Eduardo Scarparo\",\"doi\":\"10.4153/s0008439523000693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers $p$ and $q$, we show that Furstenberg's $\\\\times p,\\\\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\\\\mathbb{Z}[\\\\frac{1}{pq}]\\\\rtimes\\\\mathbb{Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\\\\mathbb{Z}[\\\\frac{1}{pq}]\\\\rtimes\\\\mathbb{Z}^2)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究阿贝尔群及其交叉积的几乎极小作用。作为一个应用,在给定乘法独立整数$p$和$q$的情况下,我们证明了Furstenberg的$\times p,\times q$猜想成立,当且仅当正则迹是群$\mathbb{Z}[\frac{1}{pq}]\rtimes\mathbb{Z}^2$的$C^*$代数上唯一忠实的极值迹态。我们还计算了$C^*(\mathbb{Z}[\frac{1}{pq}]\rtimes\mathbb{Z}^2)$的原始理想空间和K理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A TRACIAL CHARACTERIZATION OF FURSTENBERG’S CONJECTURE
We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers $p$ and $q$, we show that Furstenberg's $\times p,\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\mathbb{Z}[\frac{1}{pq}]\rtimes\mathbb{Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\mathbb{Z}[\frac{1}{pq}]\rtimes\mathbb{Z}^2)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信