半正定矩阵的辛特征值与迹极小化定理

Pub Date : 2022-08-10 DOI:10.13001/ela.2022.7351
N. T. Son, T. Stykel
{"title":"半正定矩阵的辛特征值与迹极小化定理","authors":"N. T. Son, T. Stykel","doi":"10.13001/ela.2022.7351","DOIUrl":null,"url":null,"abstract":"Symplectic eigenvalues are conventionally defined for symmetric positive-definite matrices via Williamson's diagonal form. Many properties of standard eigenvalues, including the trace minimization theorem, have been extended to the case of symplectic eigenvalues. In this note, we will generalize Williamson's diagonal form for symmetric positive-definite matrices to the case of symmetric positive-semidefinite matrices, which allows us to define symplectic eigenvalues, and prove the trace minimization theorem in the new setting.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Symplectic eigenvalues of positive-semidefinite matrices and the trace minimization theorem\",\"authors\":\"N. T. Son, T. Stykel\",\"doi\":\"10.13001/ela.2022.7351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symplectic eigenvalues are conventionally defined for symmetric positive-definite matrices via Williamson's diagonal form. Many properties of standard eigenvalues, including the trace minimization theorem, have been extended to the case of symplectic eigenvalues. In this note, we will generalize Williamson's diagonal form for symmetric positive-definite matrices to the case of symmetric positive-semidefinite matrices, which allows us to define symplectic eigenvalues, and prove the trace minimization theorem in the new setting.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

辛特征值通常是通过Williamson对角线形式定义对称正定矩阵的。许多标准特征值的性质,包括迹极小定理,已经推广到辛特征值的情况。本文将对称正定矩阵的Williamson对角线形式推广到对称正定矩阵的情况,使我们能够定义辛特征值,并证明了在这种新情况下的迹极小定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Symplectic eigenvalues of positive-semidefinite matrices and the trace minimization theorem
Symplectic eigenvalues are conventionally defined for symmetric positive-definite matrices via Williamson's diagonal form. Many properties of standard eigenvalues, including the trace minimization theorem, have been extended to the case of symplectic eigenvalues. In this note, we will generalize Williamson's diagonal form for symmetric positive-definite matrices to the case of symmetric positive-semidefinite matrices, which allows us to define symplectic eigenvalues, and prove the trace minimization theorem in the new setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信