含分数扩散的多孔介质方程的分析和平均场推导

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi
{"title":"含分数扩散的多孔介质方程的分析和平均场推导","authors":"Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi","doi":"10.1080/03605302.2022.2118608","DOIUrl":null,"url":null,"abstract":"Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis and mean-field derivation of a porous-medium equation with fractional diffusion\",\"authors\":\"Li Chen, Alexandra Holzinger, A. Jüngel, N. Zamponi\",\"doi\":\"10.1080/03605302.2022.2118608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2118608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2118608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

摘要

摘要利用具有奇异Riesz势的随机适度相互作用多粒子系统的平均场型极限,得到了整个空间的非局部多孔介质方程。非定域性由分数阶拉普拉斯算子的逆给出,极限方程可以解释为分数阶压力下的输运方程。证明是基于Oelschläger的方法和相关扩散方程的先验估计,来自能量型和熵不等式以及抛物线规则。在正则化过程的基础上,给出了分数阶多孔介质方程的存在性分析,给出了分数阶gagliado - nirenberg不等式的新变体和div-旋度引理。平均场极限估计的一个结果是混沌特性的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and mean-field derivation of a porous-medium equation with fractional diffusion
Abstract A mean-field-type limit from stochastic moderately interacting many-particle systems with singular Riesz potential is performed, leading to nonlocal porous-medium equations in the whole space. The nonlocality is given by the inverse of a fractional Laplacian, and the limit equation can be interpreted as a transport equation with a fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates for the associated diffusion equations, coming from energy-type and entropy inequalities as well as parabolic regularity. An existence analysis of the fractional porous-medium equation is also provided, based on a careful regularization procedure, new variants of fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of the mean-field limit estimates is the propagation of chaos property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信