Schrödinger-Poisson问题多峰解的非退化性

IF 2.1 2区 数学 Q1 MATHEMATICS
Lin Chen, Hui Ding, Benniao Li, Jianghua Ye
{"title":"Schrödinger-Poisson问题多峰解的非退化性","authors":"Lin Chen, Hui Ding, Benniao Li, Jianghua Ye","doi":"10.1515/ans-2022-0079","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the following Schrödinger-Poisson problem: − ε 2 Δ u + V ( y ) u + Φ ( y ) u = ∣ u ∣ p − 1 u , y ∈ R 3 , − Δ Φ ( y ) = u 2 , y ∈ R 3 , \\left\\{\\begin{array}{ll}-{\\varepsilon }^{2}\\Delta u+V(y)u+\\Phi (y)u={| u| }^{p-1}u,& y\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\Phi (y)={u}^{2},& y\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. where ε > 0 \\varepsilon \\gt 0 is a small parameter, 1 < p < 5 1\\lt p\\lt 5 , and V ( y ) V(y) is a potential function. We construct multi-peak solution concentrating at the critical points of V ( y ) V(y) through the Lyapunov-Schmidt reduction method. Moreover, by using blow-up analysis and local Pohozaev identities, we prove that the multi-peak solution we construct is non-degenerate. To our knowledge, it seems be the first non-degeneracy result on the Schödinger-Poisson system.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-degeneracy of multi-peak solutions for the Schrödinger-Poisson problem\",\"authors\":\"Lin Chen, Hui Ding, Benniao Li, Jianghua Ye\",\"doi\":\"10.1515/ans-2022-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider the following Schrödinger-Poisson problem: − ε 2 Δ u + V ( y ) u + Φ ( y ) u = ∣ u ∣ p − 1 u , y ∈ R 3 , − Δ Φ ( y ) = u 2 , y ∈ R 3 , \\\\left\\\\{\\\\begin{array}{ll}-{\\\\varepsilon }^{2}\\\\Delta u+V(y)u+\\\\Phi (y)u={| u| }^{p-1}u,& y\\\\in {{\\\\mathbb{R}}}^{3},\\\\\\\\ -\\\\Delta \\\\Phi (y)={u}^{2},& y\\\\in {{\\\\mathbb{R}}}^{3},\\\\end{array}\\\\right. where ε > 0 \\\\varepsilon \\\\gt 0 is a small parameter, 1 < p < 5 1\\\\lt p\\\\lt 5 , and V ( y ) V(y) is a potential function. We construct multi-peak solution concentrating at the critical points of V ( y ) V(y) through the Lyapunov-Schmidt reduction method. Moreover, by using blow-up analysis and local Pohozaev identities, we prove that the multi-peak solution we construct is non-degenerate. To our knowledge, it seems be the first non-degeneracy result on the Schödinger-Poisson system.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0079\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文考虑以下Schrödinger-Poisson问题:−ε 2 Δ u + V (y) u + Φ (y) u =∣u∣p−1 u, y∈R 3,−Δ Φ (y) = u 2, y∈R 3, \left {\begin{array}{ll}-{\varepsilon }^{2}\Delta u+V(y)u+\Phi (y)u={| u| }^{p-1}u,& y\in {{\mathbb{R}}}^{3},\\ -\Delta \Phi (y)={u}^{2},& y\in {{\mathbb{R}}}^{3},\end{array}\right。其中ε > 0 \varepsilon\gt 0为小参数,1 < p < 51 1 \lt p \lt 5, V(y) V(y)为势函数。我们通过Lyapunov-Schmidt约简方法构造了集中在V(y) V(y)临界点的多峰解。利用爆破分析和局部Pohozaev恒等式,证明了所构造的多峰解是不退化的。据我们所知,这似乎是Schödinger-Poisson系统上的第一个非简并性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-degeneracy of multi-peak solutions for the Schrödinger-Poisson problem
Abstract In this article, we consider the following Schrödinger-Poisson problem: − ε 2 Δ u + V ( y ) u + Φ ( y ) u = ∣ u ∣ p − 1 u , y ∈ R 3 , − Δ Φ ( y ) = u 2 , y ∈ R 3 , \left\{\begin{array}{ll}-{\varepsilon }^{2}\Delta u+V(y)u+\Phi (y)u={| u| }^{p-1}u,& y\in {{\mathbb{R}}}^{3},\\ -\Delta \Phi (y)={u}^{2},& y\in {{\mathbb{R}}}^{3},\end{array}\right. where ε > 0 \varepsilon \gt 0 is a small parameter, 1 < p < 5 1\lt p\lt 5 , and V ( y ) V(y) is a potential function. We construct multi-peak solution concentrating at the critical points of V ( y ) V(y) through the Lyapunov-Schmidt reduction method. Moreover, by using blow-up analysis and local Pohozaev identities, we prove that the multi-peak solution we construct is non-degenerate. To our knowledge, it seems be the first non-degeneracy result on the Schödinger-Poisson system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信