平静水中推驳系统阻力特性的CFD研究

IF 1.2 Q3 ENGINEERING, MARINE
A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd
{"title":"平静水中推驳系统阻力特性的CFD研究","authors":"A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd","doi":"10.3329/jname.v18i2.52593","DOIUrl":null,"url":null,"abstract":"Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD investigation into resistance characteristics of a pusher-barge system in calm water\",\"authors\":\"A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd\",\"doi\":\"10.3329/jname.v18i2.52593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.52593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.52593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

推进驳船系统的船舶总阻力预测已经变得非常复杂,涉及到沿船体形状的非线性流体动力学流动行为。由于压力和粘性阻力的非线性特性,经验和简化的数值解仍然可能导致不准确的结果。使用更复杂的方法显然需要解决上述问题。本文提出了一种计算流体动力学(CFD)方法来预测各种驳船配置下推驳系统的总船舶阻力。为了实现这一目标,在计算模拟中考虑了四种不同配置的驳船模型,并结合了不同的弗劳德数。总体而言,结果表明,弗劳德数(Fr=0.182至0.312)的增加与RT、RP和RV的大小成正比。无论弗劳德数如何,与12BP和11BP相比,具有13BP配置的推驳系统提供了最高的阻力。此外,驳船的纵向(12BP)和横向(21BP)配置产生了显著影响,RT、RP和RV值分别增加了110%、167.5%和77.6%。可能的原因是21BP的总润湿表面积的增加产生了成比例的更高的压力和粘性阻力。在总体研究的基础上,从推驳系统的总阻力和阻力系数的几个方面对数值结果进行了分析。该分析为选择最可靠的推驳船系统布置提供了非常有价值的信息。该分析为选择最可靠的推驳系统布置提供了非常有价值的信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD investigation into resistance characteristics of a pusher-barge system in calm water
Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信