A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd
{"title":"平静水中推驳系统阻力特性的CFD研究","authors":"A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd","doi":"10.3329/jname.v18i2.52593","DOIUrl":null,"url":null,"abstract":"Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD investigation into resistance characteristics of a pusher-barge system in calm water\",\"authors\":\"A. Fitriadhy, N. A. Adam, Izzati Pison, M. A. A Rahman, M. A. Musa, M. H. Mohd\",\"doi\":\"10.3329/jname.v18i2.52593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.52593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.52593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
CFD investigation into resistance characteristics of a pusher-barge system in calm water
Prediction of ship’s total resistance of a pusher-barge system has become enormous complexity involving nonlinear-hydrodynamic flows behaviour along their hull forms. Both of empirical and simplified numerical solutions may still lead into inaccurate results due to presence of nonlinear characteristics of the pressure and viscous resistances. The use of a more sophisticated method would obviously necessitate to solve the above problem. This paper presents a Computational Fluid Dynamics (CFD) approach to predict the total ship’s resistance of a pusher-barge system at various barge’s configurations. To achieve such objective, four different configurations of the barge models incorporated with various Froude numbers have been taken into account in the computational simulation. In general, the results revealed that the increase of Froude number (Fr = 0.182 to 0.312) was proportional to the magnitude of RT, RP and RV. Regardless of the various Froude number, the pusher-barge system with a 13BP configuration provides the highest resistance compared to the 12BP and 11BP. In addition, the arrangement of barges in the longitudinal (12BP) and lateral (21BP) configurations produced a significant effect with increases in RT, RP and RV values of 110%, 167.5% and 77.6%, respectively. The possible reason for this is that the increase of the total wetted surface area for 21BP has produced to a proportionally higher amount of the pressure and viscous resistance. Overall study, the numerical results were presented and analysed based on few aspects involved the total resistance and resistance coefficient in terms of pressure and viscous resistance of the pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system. This analysis provides very valuable information on choosing the most reliable arrangement of pusher-barge system
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.