{"title":"有限C^* -代数上保持可逆性的映射","authors":"Martin Mathieu, F. Schulz","doi":"10.4064/sm230101-27-3","DOIUrl":null,"url":null,"abstract":"We prove that every surjective unital linear mapping which preserves invertible elements from a Banach algebra onto a C*-algebra carrying a faithful tracial state is a Jordan homomorphism thus generalising Aupetit's 1998 result for finite von Neumann algebras.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invertibility preserving mappings onto finite $C^*$-algebras\",\"authors\":\"Martin Mathieu, F. Schulz\",\"doi\":\"10.4064/sm230101-27-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every surjective unital linear mapping which preserves invertible elements from a Banach algebra onto a C*-algebra carrying a faithful tracial state is a Jordan homomorphism thus generalising Aupetit's 1998 result for finite von Neumann algebras.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm230101-27-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm230101-27-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that every surjective unital linear mapping which preserves invertible elements from a Banach algebra onto a C*-algebra carrying a faithful tracial state is a Jordan homomorphism thus generalising Aupetit's 1998 result for finite von Neumann algebras.
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.