与Zakharov-Shabat系统相关的Gelfand–Levitan–Marchenko方程的Block Toeplitz内边界方法

IF 0.9 4区 数学 Q2 MATHEMATICS
S. Medvedev, I. Vaseva, M. Fedoruk
{"title":"与Zakharov-Shabat系统相关的Gelfand–Levitan–Marchenko方程的Block Toeplitz内边界方法","authors":"S. Medvedev, I. Vaseva, M. Fedoruk","doi":"10.1515/jiip-2022-0072","DOIUrl":null,"url":null,"abstract":"Abstract We propose a generalized method for solving the Gelfand–Levitan–Marchenko equation (GLME) based on the block version of the Toeplitz Inner-Bordering (TIB). The method works for the signals containing both the continuous and the discrete spectra. The method allows us to calculate the potential at an arbitrary point and does not require small spectral data. Using this property, we can perform calculations to the right and to the left of the selected starting point. For the discrete spectrum, the procedure of cutting off exponentially growing matrix elements is suggested to avoid the numerical instability and perform calculations for soliton solutions spaced apart in the time domain.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"31 1","pages":"191 - 202"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block Toeplitz Inner-Bordering method for the Gelfand–Levitan–Marchenko equations associated with the Zakharov–Shabat system\",\"authors\":\"S. Medvedev, I. Vaseva, M. Fedoruk\",\"doi\":\"10.1515/jiip-2022-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a generalized method for solving the Gelfand–Levitan–Marchenko equation (GLME) based on the block version of the Toeplitz Inner-Bordering (TIB). The method works for the signals containing both the continuous and the discrete spectra. The method allows us to calculate the potential at an arbitrary point and does not require small spectral data. Using this property, we can perform calculations to the right and to the left of the selected starting point. For the discrete spectrum, the procedure of cutting off exponentially growing matrix elements is suggested to avoid the numerical instability and perform calculations for soliton solutions spaced apart in the time domain.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"31 1\",\"pages\":\"191 - 202\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0072\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要基于Toeplitz内边界(TIB)的分块形式,我们提出了一种求解Gelfand–Levitan–Marchenko方程(GLME)的广义方法。该方法适用于同时包含连续谱和离散谱的信号。该方法允许我们计算任意点的电势,并且不需要小的光谱数据。使用此属性,我们可以在选定起点的右侧和左侧执行计算。对于离散谱,建议采用截断指数增长矩阵元的方法来避免数值不稳定性,并对时域中间隔开的孤立子解进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block Toeplitz Inner-Bordering method for the Gelfand–Levitan–Marchenko equations associated with the Zakharov–Shabat system
Abstract We propose a generalized method for solving the Gelfand–Levitan–Marchenko equation (GLME) based on the block version of the Toeplitz Inner-Bordering (TIB). The method works for the signals containing both the continuous and the discrete spectra. The method allows us to calculate the potential at an arbitrary point and does not require small spectral data. Using this property, we can perform calculations to the right and to the left of the selected starting point. For the discrete spectrum, the procedure of cutting off exponentially growing matrix elements is suggested to avoid the numerical instability and perform calculations for soliton solutions spaced apart in the time domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信