S. Merati, M. R. Farhangdoost, A.R. Attari Polsangi
{"title":"到同伦和同李代数模的表示","authors":"S. Merati, M. R. Farhangdoost, A.R. Attari Polsangi","doi":"10.1080/1726037X.2020.1788817","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we introduce the concept of hom-Lie algebroid modules and hom-Lie algebroids. Then we show the correspondence between hom-Lie algebroid modules and representation up to homotopy of hom-Lie algebroids. Because of the effective role of representation theory and Lie algebraic structures in particle physics, we show the correspondence between bi-graded hom-Lie algebraic modules and hom-Lie algebraist. At the end, we study some properties of representation up to homotopy, using the language of hom-Lie algebroid modules.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"27 - 37"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1788817","citationCount":"1","resultStr":"{\"title\":\"Representation up to Homotopy and Hom-Lie Algebroid Modules\",\"authors\":\"S. Merati, M. R. Farhangdoost, A.R. Attari Polsangi\",\"doi\":\"10.1080/1726037X.2020.1788817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we introduce the concept of hom-Lie algebroid modules and hom-Lie algebroids. Then we show the correspondence between hom-Lie algebroid modules and representation up to homotopy of hom-Lie algebroids. Because of the effective role of representation theory and Lie algebraic structures in particle physics, we show the correspondence between bi-graded hom-Lie algebraic modules and hom-Lie algebraist. At the end, we study some properties of representation up to homotopy, using the language of hom-Lie algebroid modules.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"27 - 37\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1788817\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1788817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1788817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Representation up to Homotopy and Hom-Lie Algebroid Modules
Abstract In this paper we introduce the concept of hom-Lie algebroid modules and hom-Lie algebroids. Then we show the correspondence between hom-Lie algebroid modules and representation up to homotopy of hom-Lie algebroids. Because of the effective role of representation theory and Lie algebraic structures in particle physics, we show the correspondence between bi-graded hom-Lie algebraic modules and hom-Lie algebraist. At the end, we study some properties of representation up to homotopy, using the language of hom-Lie algebroid modules.