到同伦和同李代数模的表示

IF 0.4 Q4 MATHEMATICS
S. Merati, M. R. Farhangdoost, A.R. Attari Polsangi
{"title":"到同伦和同李代数模的表示","authors":"S. Merati, M. R. Farhangdoost, A.R. Attari Polsangi","doi":"10.1080/1726037X.2020.1788817","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we introduce the concept of hom-Lie algebroid modules and hom-Lie algebroids. Then we show the correspondence between hom-Lie algebroid modules and representation up to homotopy of hom-Lie algebroids. Because of the effective role of representation theory and Lie algebraic structures in particle physics, we show the correspondence between bi-graded hom-Lie algebraic modules and hom-Lie algebraist. At the end, we study some properties of representation up to homotopy, using the language of hom-Lie algebroid modules.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"27 - 37"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1788817","citationCount":"1","resultStr":"{\"title\":\"Representation up to Homotopy and Hom-Lie Algebroid Modules\",\"authors\":\"S. Merati, M. R. Farhangdoost, A.R. Attari Polsangi\",\"doi\":\"10.1080/1726037X.2020.1788817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we introduce the concept of hom-Lie algebroid modules and hom-Lie algebroids. Then we show the correspondence between hom-Lie algebroid modules and representation up to homotopy of hom-Lie algebroids. Because of the effective role of representation theory and Lie algebraic structures in particle physics, we show the correspondence between bi-graded hom-Lie algebraic modules and hom-Lie algebraist. At the end, we study some properties of representation up to homotopy, using the language of hom-Lie algebroid modules.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"27 - 37\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1788817\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1788817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1788817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文介绍了hom李代数体模和hom李算法体的概念。然后我们给出了hom-Lie代数体模与hom-Lie算法体的表示之间的对应关系。由于表示论和李代数结构在粒子物理学中的有效作用,我们展示了二阶hom-Lie代数模与hom-Lie算子之间的对应关系。最后,利用hom-Lie代数体模的语言,研究了表示到同伦论的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation up to Homotopy and Hom-Lie Algebroid Modules
Abstract In this paper we introduce the concept of hom-Lie algebroid modules and hom-Lie algebroids. Then we show the correspondence between hom-Lie algebroid modules and representation up to homotopy of hom-Lie algebroids. Because of the effective role of representation theory and Lie algebraic structures in particle physics, we show the correspondence between bi-graded hom-Lie algebraic modules and hom-Lie algebraist. At the end, we study some properties of representation up to homotopy, using the language of hom-Lie algebroid modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信