湮灭子和奇点范畴的维度

Pub Date : 2022-02-19 DOI:10.1017/nmj.2022.45
Jian Liu
{"title":"湮灭子和奇点范畴的维度","authors":"Jian Liu","doi":"10.1017/nmj.2022.45","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANNIHILATORS AND DIMENSIONS OF THE SINGULARITY CATEGORY\",\"authors\":\"Jian Liu\",\"doi\":\"10.1017/nmj.2022.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设R是一个交换诺瑟环。证明了如果R是一个完全域上的等维有限生成代数,或者是一个具有完全剩余域的等维等特征完备局部环,则R的奇异范畴的湮灭子与R的雅可比理想直至根号重合。在一些温和的假设下,我们建立了R的奇异范畴的湮灭子与R的上同湮灭子之间的关系。最后给出了具有孤立奇点的等特征优局部环奇点范畴维数的上界。这将Dao和Takahashi的结果扩展到非cohen - macaulay环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ANNIHILATORS AND DIMENSIONS OF THE SINGULARITY CATEGORY
Abstract Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信