具有非局部泛函边界条件的非线性分数随机微分系统解的存在唯一性

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Ouaddah Abdelhamid, J. Graef, A. Ouahab
{"title":"具有非局部泛函边界条件的非线性分数随机微分系统解的存在唯一性","authors":"Ouaddah Abdelhamid, J. Graef, A. Ouahab","doi":"10.1080/07362994.2022.2078839","DOIUrl":null,"url":null,"abstract":"Abstract The authors study the existence and uniqueness of solutions to nonlinear first-order fractional stochastic differential systems driven by Brownian motion and with nonlocal functional boundary conditions. The technique of proof involves Perov’s fixed point theorem with matrices that converge to zero and the Leray–Schauder theorem.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"713 - 733"},"PeriodicalIF":0.8000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of solutions of nonlinear fractional stochastic differential systems with nonlocal functional boundary conditions\",\"authors\":\"Ouaddah Abdelhamid, J. Graef, A. Ouahab\",\"doi\":\"10.1080/07362994.2022.2078839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The authors study the existence and uniqueness of solutions to nonlinear first-order fractional stochastic differential systems driven by Brownian motion and with nonlocal functional boundary conditions. The technique of proof involves Perov’s fixed point theorem with matrices that converge to zero and the Leray–Schauder theorem.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"41 1\",\"pages\":\"713 - 733\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2022.2078839\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2078839","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了布朗运动驱动的具有非局部泛函边界条件的非线性一阶分数阶随机微分系统解的存在性和唯一性。证明技术涉及矩阵收敛到零的Perov不动点定理和Leray–Schauder定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of solutions of nonlinear fractional stochastic differential systems with nonlocal functional boundary conditions
Abstract The authors study the existence and uniqueness of solutions to nonlinear first-order fractional stochastic differential systems driven by Brownian motion and with nonlocal functional boundary conditions. The technique of proof involves Perov’s fixed point theorem with matrices that converge to zero and the Leray–Schauder theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信