Eric J Bylaska, Kevin Waters, Eric D Hermes, Judit Zádor, Kevin M Rosso
{"title":"计算周期边界条件下精确交换的类filon积分策略:平面波DFT实现","authors":"Eric J Bylaska, Kevin Waters, Eric D Hermes, Judit Zádor, Kevin M Rosso","doi":"10.1186/s41313-020-00019-9","DOIUrl":null,"url":null,"abstract":"<p>An efficient and accurate approach for calculating exact exchange and other two-electron integrals has been developed for periodic electronic structure methods. Traditional approaches used for integrating over the Brillouin zone in band structure calculations, e.g. trapezoidal or Monkhorst-Pack, are not accurate enough for two-electron integrals. This is because their integrands contain multiple singularities over the double integration of the Brillouin zone, which with simple integration methods lead to very inaccurate results. A common approach to this problem has been to replace the Coulomb interaction with a screened Coulomb interaction that removes singularities from the integrands in the two-electron integrals, albeit at the inelegance of having to introduce a screening factor which must precomputed or guessed. Instead of introducing screened Coulomb interactions in an ad hoc way, the method developed in this work derives an effective screened potential using a Filon-like integration approach that is based only on the lattice parameters. This approach overcomes the limitations of traditionally defined screened Coulomb interactions for calculating two-electron integrals, and makes chemistry many-body calculations tractable in periodic boundary conditions. This method has been applied to several systems for which conventional DFT methods do not work well, including the reaction pathways for the addition of H<sub>2</sub> to phenol and Au<span>\\(_{20}^{-}\\)</span> nanoparticle, and the electron transfer of a charge trapped state in the Fe(II) containing mica, annite.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-020-00019-9","citationCount":"4","resultStr":"{\"title\":\"A Filon-like integration strategy for calculating exact exchange in periodic boundary conditions: a plane-wave DFT implementation\",\"authors\":\"Eric J Bylaska, Kevin Waters, Eric D Hermes, Judit Zádor, Kevin M Rosso\",\"doi\":\"10.1186/s41313-020-00019-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient and accurate approach for calculating exact exchange and other two-electron integrals has been developed for periodic electronic structure methods. Traditional approaches used for integrating over the Brillouin zone in band structure calculations, e.g. trapezoidal or Monkhorst-Pack, are not accurate enough for two-electron integrals. This is because their integrands contain multiple singularities over the double integration of the Brillouin zone, which with simple integration methods lead to very inaccurate results. A common approach to this problem has been to replace the Coulomb interaction with a screened Coulomb interaction that removes singularities from the integrands in the two-electron integrals, albeit at the inelegance of having to introduce a screening factor which must precomputed or guessed. Instead of introducing screened Coulomb interactions in an ad hoc way, the method developed in this work derives an effective screened potential using a Filon-like integration approach that is based only on the lattice parameters. This approach overcomes the limitations of traditionally defined screened Coulomb interactions for calculating two-electron integrals, and makes chemistry many-body calculations tractable in periodic boundary conditions. This method has been applied to several systems for which conventional DFT methods do not work well, including the reaction pathways for the addition of H<sub>2</sub> to phenol and Au<span>\\\\(_{20}^{-}\\\\)</span> nanoparticle, and the electron transfer of a charge trapped state in the Fe(II) containing mica, annite.</p>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s41313-020-00019-9\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-020-00019-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-020-00019-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Filon-like integration strategy for calculating exact exchange in periodic boundary conditions: a plane-wave DFT implementation
An efficient and accurate approach for calculating exact exchange and other two-electron integrals has been developed for periodic electronic structure methods. Traditional approaches used for integrating over the Brillouin zone in band structure calculations, e.g. trapezoidal or Monkhorst-Pack, are not accurate enough for two-electron integrals. This is because their integrands contain multiple singularities over the double integration of the Brillouin zone, which with simple integration methods lead to very inaccurate results. A common approach to this problem has been to replace the Coulomb interaction with a screened Coulomb interaction that removes singularities from the integrands in the two-electron integrals, albeit at the inelegance of having to introduce a screening factor which must precomputed or guessed. Instead of introducing screened Coulomb interactions in an ad hoc way, the method developed in this work derives an effective screened potential using a Filon-like integration approach that is based only on the lattice parameters. This approach overcomes the limitations of traditionally defined screened Coulomb interactions for calculating two-electron integrals, and makes chemistry many-body calculations tractable in periodic boundary conditions. This method has been applied to several systems for which conventional DFT methods do not work well, including the reaction pathways for the addition of H2 to phenol and Au\(_{20}^{-}\) nanoparticle, and the electron transfer of a charge trapped state in the Fe(II) containing mica, annite.
期刊介绍:
Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory.
The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.