一种新型多向膨胀模块化浮动结构系统的水动力响应

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Yanwei Li, Xiang Li, Nianixn Ren, J. Ou
{"title":"一种新型多向膨胀模块化浮动结构系统的水动力响应","authors":"Yanwei Li, Xiang Li, Nianixn Ren, J. Ou","doi":"10.1115/1.4056163","DOIUrl":null,"url":null,"abstract":"\n In order to comprehensively utilize ocean resources and renewable energy, a novel modular floating structure (MFS) system with multi-direction expansibility has been proposed, which includes inner hexagonal tension leg platform (TLP) modules and outermost floating artificial reef modules coupled with the function of the wave energy converter (WEC). Considering both the hydrodynamic interaction effect and the mechanical coupling effect, main dynamic responses of the MFS system has been analyzed under different incident wave directions, and the corresponding physical mechanism has been clarified. Results indicate that connector loads slightly increase, but motion responses of the MFS system are more stable when the outermost floating artificial reefs serve as the up-wave modules. Outermost floating artificial reef modules have shown good wave-attenuation capacity for inner TLP modules, as well as producing considerable output wave power. The effect of key power take-off (PTO) parameters on the WECs’ performance has been investigated, and the optimal PTO damping coefficient has been suggested. In addition, extreme responses of the proposed MFS system have been further studied, and its safety has been well verified under typical extreme sea conditions. Main results in this work can serve as a helpful reference for the construction of future offshore floating cities.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic responses of a novel modular floating structure system with multi-direction expansion\",\"authors\":\"Yanwei Li, Xiang Li, Nianixn Ren, J. Ou\",\"doi\":\"10.1115/1.4056163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to comprehensively utilize ocean resources and renewable energy, a novel modular floating structure (MFS) system with multi-direction expansibility has been proposed, which includes inner hexagonal tension leg platform (TLP) modules and outermost floating artificial reef modules coupled with the function of the wave energy converter (WEC). Considering both the hydrodynamic interaction effect and the mechanical coupling effect, main dynamic responses of the MFS system has been analyzed under different incident wave directions, and the corresponding physical mechanism has been clarified. Results indicate that connector loads slightly increase, but motion responses of the MFS system are more stable when the outermost floating artificial reefs serve as the up-wave modules. Outermost floating artificial reef modules have shown good wave-attenuation capacity for inner TLP modules, as well as producing considerable output wave power. The effect of key power take-off (PTO) parameters on the WECs’ performance has been investigated, and the optimal PTO damping coefficient has been suggested. In addition, extreme responses of the proposed MFS system have been further studied, and its safety has been well verified under typical extreme sea conditions. Main results in this work can serve as a helpful reference for the construction of future offshore floating cities.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056163\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056163","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了综合利用海洋资源和可再生能源,提出了一种具有多向可扩展性的模块化浮动结构(MFS)系统,该系统包括内六边形张力腿平台(TLP)模块和最外层的浮动人工礁模块,并结合波浪能转换器(WEC)的功能。考虑到水动力相互作用和机械耦合效应,分析了MFS系统在不同入射波方向下的主要动力响应,并阐明了相应的物理机制。结果表明,当最外层的漂浮人工礁作为上行波浪模块时,连接器负载略有增加,但MFS系统的运动响应更稳定。最外部的浮动人工礁模块显示出对内部TLP模块良好的波浪衰减能力,并产生相当大的输出波浪功率。研究了关键动力输出(PTO)参数对WEC性能的影响,并提出了最佳PTO阻尼系数。此外,还对所提出的MFS系统的极端响应进行了进一步的研究,并在典型的极端海况下验证了其安全性。这项工作的主要成果可为未来海上漂浮城市的建设提供有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic responses of a novel modular floating structure system with multi-direction expansion
In order to comprehensively utilize ocean resources and renewable energy, a novel modular floating structure (MFS) system with multi-direction expansibility has been proposed, which includes inner hexagonal tension leg platform (TLP) modules and outermost floating artificial reef modules coupled with the function of the wave energy converter (WEC). Considering both the hydrodynamic interaction effect and the mechanical coupling effect, main dynamic responses of the MFS system has been analyzed under different incident wave directions, and the corresponding physical mechanism has been clarified. Results indicate that connector loads slightly increase, but motion responses of the MFS system are more stable when the outermost floating artificial reefs serve as the up-wave modules. Outermost floating artificial reef modules have shown good wave-attenuation capacity for inner TLP modules, as well as producing considerable output wave power. The effect of key power take-off (PTO) parameters on the WECs’ performance has been investigated, and the optimal PTO damping coefficient has been suggested. In addition, extreme responses of the proposed MFS system have been further studied, and its safety has been well verified under typical extreme sea conditions. Main results in this work can serve as a helpful reference for the construction of future offshore floating cities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
6.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events. Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信