{"title":"与$q$-卷积相关的双一元函数的Faber多项式系数估计","authors":"S. El-Deeb, S. Bulut","doi":"10.21136/mb.2022.0173-20","DOIUrl":null,"url":null,"abstract":"We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.","PeriodicalId":45392,"journal":{"name":"Mathematica Bohemica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Faber polynomial coefficient estimates of bi-univalent functions connected\\n \\nwith the $q$-convolution\",\"authors\":\"S. El-Deeb, S. Bulut\",\"doi\":\"10.21136/mb.2022.0173-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.\",\"PeriodicalId\":45392,\"journal\":{\"name\":\"Mathematica Bohemica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Bohemica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/mb.2022.0173-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Bohemica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/mb.2022.0173-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Faber polynomial coefficient estimates of bi-univalent functions connected
with the $q$-convolution
We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.