平面格中有理角的分类

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
R. Dvornicich, F. Veneziano, U. Zannier
{"title":"平面格中有理角的分类","authors":"R. Dvornicich, F. Veneziano, U. Zannier","doi":"10.1090/BULL/1723","DOIUrl":null,"url":null,"abstract":"This paper is concerned with configurations of points in a plane lattice which determine angles that are rational multiples of \n\n \n π\n \\pi\n \n\n. We shall study how many such angles may appear in a given lattice and in which positions, allowing the lattice to vary arbitrarily.\n\nThis classification turns out to be much less simple than could be expected, leading even to parametrizations involving rational points on certain algebraic curves of positive genus.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of rational angles in plane lattices\",\"authors\":\"R. Dvornicich, F. Veneziano, U. Zannier\",\"doi\":\"10.1090/BULL/1723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with configurations of points in a plane lattice which determine angles that are rational multiples of \\n\\n \\n π\\n \\\\pi\\n \\n\\n. We shall study how many such angles may appear in a given lattice and in which positions, allowing the lattice to vary arbitrarily.\\n\\nThis classification turns out to be much less simple than could be expected, leading even to parametrizations involving rational points on certain algebraic curves of positive genus.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/BULL/1723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/BULL/1723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了平面晶格中点的构型,这些点决定了ππ的有理倍数的角度。我们将研究在给定的晶格中可能出现多少这样的角度,以及在哪些位置,从而允许晶格任意变化。事实证明,这种分类远没有预期的那么简单,甚至导致了涉及正亏格的某些代数曲线上的有理点的参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of rational angles in plane lattices
This paper is concerned with configurations of points in a plane lattice which determine angles that are rational multiples of π \pi . We shall study how many such angles may appear in a given lattice and in which positions, allowing the lattice to vary arbitrarily. This classification turns out to be much less simple than could be expected, leading even to parametrizations involving rational points on certain algebraic curves of positive genus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信