Lincoln Blandford, Emily J. Cushion, Ryan Mahaffey
{"title":"认知运动控制测试的节段和节段间协调特征:量化运动选择的损失","authors":"Lincoln Blandford, Emily J. Cushion, Ryan Mahaffey","doi":"10.3390/biomechanics2020018","DOIUrl":null,"url":null,"abstract":"Cognitive movement control tests are hypothesized to reveal reduced coordination variability, a feature of motor behaviour linked to clinical presentations. Exploration of this proposition via kinematic analysis of test pass and fail conditions is yet to be conducted. Kinematics (3D) were collected as 28 participants were qualitatively rated during nine trials of a cognitive movement control test. Ten female and two male participants passing the test were matched to twelve participants who failed (three males, nine females). Sagittal plane pelvis and knee angles were determined. Peak pelvic deviation and knee flexion maxima/minima were compared between groups. Classification tree analysis explored relationships between test failure and pelvis–knee intersegmental coordination strategy classifications derived from novel and traditional vector coding techniques. Coordination variability waveforms were assessed via SPM. Age, BMI, and knee flexion values did not differ between the groups (p > 0.05); however, participants rated as failing the test displayed greater pelvic deviation (p < 0.05). Classification tree analysis revealed a greater use of pelvic dominant intersegmental coordination strategies from both vector coding techniques (p < 0.001) by fail-group participants. The fail-group also displayed lower coordination variability for novel (p < 0.05), but not traditional (p > 0.05) vector coding technique waveforms, supporting the premise that the testing protocol may act as a qualitative approach to inform on features of motor behavior linked to clinical presentations.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmental and Intersegmental Coordination Characteristics of a Cognitive Movement Control Test: Quantifying Loss of Movement Choices\",\"authors\":\"Lincoln Blandford, Emily J. Cushion, Ryan Mahaffey\",\"doi\":\"10.3390/biomechanics2020018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive movement control tests are hypothesized to reveal reduced coordination variability, a feature of motor behaviour linked to clinical presentations. Exploration of this proposition via kinematic analysis of test pass and fail conditions is yet to be conducted. Kinematics (3D) were collected as 28 participants were qualitatively rated during nine trials of a cognitive movement control test. Ten female and two male participants passing the test were matched to twelve participants who failed (three males, nine females). Sagittal plane pelvis and knee angles were determined. Peak pelvic deviation and knee flexion maxima/minima were compared between groups. Classification tree analysis explored relationships between test failure and pelvis–knee intersegmental coordination strategy classifications derived from novel and traditional vector coding techniques. Coordination variability waveforms were assessed via SPM. Age, BMI, and knee flexion values did not differ between the groups (p > 0.05); however, participants rated as failing the test displayed greater pelvic deviation (p < 0.05). Classification tree analysis revealed a greater use of pelvic dominant intersegmental coordination strategies from both vector coding techniques (p < 0.001) by fail-group participants. The fail-group also displayed lower coordination variability for novel (p < 0.05), but not traditional (p > 0.05) vector coding technique waveforms, supporting the premise that the testing protocol may act as a qualitative approach to inform on features of motor behavior linked to clinical presentations.\",\"PeriodicalId\":72381,\"journal\":{\"name\":\"Biomechanics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biomechanics2020018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics2020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmental and Intersegmental Coordination Characteristics of a Cognitive Movement Control Test: Quantifying Loss of Movement Choices
Cognitive movement control tests are hypothesized to reveal reduced coordination variability, a feature of motor behaviour linked to clinical presentations. Exploration of this proposition via kinematic analysis of test pass and fail conditions is yet to be conducted. Kinematics (3D) were collected as 28 participants were qualitatively rated during nine trials of a cognitive movement control test. Ten female and two male participants passing the test were matched to twelve participants who failed (three males, nine females). Sagittal plane pelvis and knee angles were determined. Peak pelvic deviation and knee flexion maxima/minima were compared between groups. Classification tree analysis explored relationships between test failure and pelvis–knee intersegmental coordination strategy classifications derived from novel and traditional vector coding techniques. Coordination variability waveforms were assessed via SPM. Age, BMI, and knee flexion values did not differ between the groups (p > 0.05); however, participants rated as failing the test displayed greater pelvic deviation (p < 0.05). Classification tree analysis revealed a greater use of pelvic dominant intersegmental coordination strategies from both vector coding techniques (p < 0.001) by fail-group participants. The fail-group also displayed lower coordination variability for novel (p < 0.05), but not traditional (p > 0.05) vector coding technique waveforms, supporting the premise that the testing protocol may act as a qualitative approach to inform on features of motor behavior linked to clinical presentations.