求解模糊分数积分微分方程的一种改进的再生核Hilbert空间方法

IF 0.4 Q4 MATHEMATICS
S. Hasan, B. Maayah, Samia Bushnaq, S. Momani
{"title":"求解模糊分数积分微分方程的一种改进的再生核Hilbert空间方法","authors":"S. Hasan, B. Maayah, Samia Bushnaq, S. Momani","doi":"10.5269/bspm.52289","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to extend the application of the reproducing kernel Hilbert space method (RKHSM) to solve linear and non-linear fuzzy integro-differential equations of fractional order under Caputo's H-differentiability. The analytic and approximate solutions are given in series form in term of their parametric form in the space $W_2^2 [a,b] \\bigoplus W_2^2 [a,b]$. Several examples are carried out to show the effectiveness and the absence of complexity of the proposed method","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A modified reproducing Kernel Hilbert space method for solving fuzzy fractional integro-differential equations\",\"authors\":\"S. Hasan, B. Maayah, Samia Bushnaq, S. Momani\",\"doi\":\"10.5269/bspm.52289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to extend the application of the reproducing kernel Hilbert space method (RKHSM) to solve linear and non-linear fuzzy integro-differential equations of fractional order under Caputo's H-differentiability. The analytic and approximate solutions are given in series form in term of their parametric form in the space $W_2^2 [a,b] \\\\bigoplus W_2^2 [a,b]$. Several examples are carried out to show the effectiveness and the absence of complexity of the proposed method\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.52289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.52289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是推广再生核希尔伯特空间方法(RKHSM)在Caputo的H-可微性下求解分数阶线性和非线性模糊积分微分方程的应用。在空间$W_2^2[a,b]\bigoplus W_2^2[a,b]$中,根据其参数形式给出了解析解和近似解的级数形式。通过几个例子说明了该方法的有效性和不复杂度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified reproducing Kernel Hilbert space method for solving fuzzy fractional integro-differential equations
The aim of this paper is to extend the application of the reproducing kernel Hilbert space method (RKHSM) to solve linear and non-linear fuzzy integro-differential equations of fractional order under Caputo's H-differentiability. The analytic and approximate solutions are given in series form in term of their parametric form in the space $W_2^2 [a,b] \bigoplus W_2^2 [a,b]$. Several examples are carried out to show the effectiveness and the absence of complexity of the proposed method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信