D. V. E. Barbosa, Marcio Cardoso Jr., L. F. B. Oliveira, A. Fredere, Cristian Gabriel de Abreu Heylmann, Paulo Carvalho, J. E. Faccion, S. M. Viana, A. J. da Silva Neto, A. Silveira, L. Rocha
{"title":"景观演化模型算法的实现、验证与案例研究","authors":"D. V. E. Barbosa, Marcio Cardoso Jr., L. F. B. Oliveira, A. Fredere, Cristian Gabriel de Abreu Heylmann, Paulo Carvalho, J. E. Faccion, S. M. Viana, A. J. da Silva Neto, A. Silveira, L. Rocha","doi":"10.4028/p-ooGbR9","DOIUrl":null,"url":null,"abstract":"This paper presents a landscape evolution model based on physical processes – hillslope processes and fluvial erosion, transport, and deposition – solved by numerical methodology. That is, through the solution of differential equations approximated by numerical methods. In this case, hillslope processes are modeled through the classical diffusion equation, discretized by the finite volume method. Fluvial erosion, transport, and deposition are modeled by the fluvial potential equations (stream power law). For this, the approximation is performed by the finite difference method. The topography – initial condition – is set by digital elevation models, obtained from satellite images. These are Raster datasets, that each cell contains a representative elevation value. The drainage is determined through the classical algorithm D8, which performs a scan on the digital elevation model, tracing routes of greater slopes between the cells. The algorithm execution flowchart is presented, and the model is validated. Finally, a geomorphological study is presented in the Piratini river basin, showing thar developed model mimics largescale natural phenomena of watershed processes.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":"427 1","pages":"13 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation, Validation and Study Case of a Landscape Evolution Model Algorithm\",\"authors\":\"D. V. E. Barbosa, Marcio Cardoso Jr., L. F. B. Oliveira, A. Fredere, Cristian Gabriel de Abreu Heylmann, Paulo Carvalho, J. E. Faccion, S. M. Viana, A. J. da Silva Neto, A. Silveira, L. Rocha\",\"doi\":\"10.4028/p-ooGbR9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a landscape evolution model based on physical processes – hillslope processes and fluvial erosion, transport, and deposition – solved by numerical methodology. That is, through the solution of differential equations approximated by numerical methods. In this case, hillslope processes are modeled through the classical diffusion equation, discretized by the finite volume method. Fluvial erosion, transport, and deposition are modeled by the fluvial potential equations (stream power law). For this, the approximation is performed by the finite difference method. The topography – initial condition – is set by digital elevation models, obtained from satellite images. These are Raster datasets, that each cell contains a representative elevation value. The drainage is determined through the classical algorithm D8, which performs a scan on the digital elevation model, tracing routes of greater slopes between the cells. The algorithm execution flowchart is presented, and the model is validated. Finally, a geomorphological study is presented in the Piratini river basin, showing thar developed model mimics largescale natural phenomena of watershed processes.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":\"427 1\",\"pages\":\"13 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-ooGbR9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ooGbR9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Implementation, Validation and Study Case of a Landscape Evolution Model Algorithm
This paper presents a landscape evolution model based on physical processes – hillslope processes and fluvial erosion, transport, and deposition – solved by numerical methodology. That is, through the solution of differential equations approximated by numerical methods. In this case, hillslope processes are modeled through the classical diffusion equation, discretized by the finite volume method. Fluvial erosion, transport, and deposition are modeled by the fluvial potential equations (stream power law). For this, the approximation is performed by the finite difference method. The topography – initial condition – is set by digital elevation models, obtained from satellite images. These are Raster datasets, that each cell contains a representative elevation value. The drainage is determined through the classical algorithm D8, which performs a scan on the digital elevation model, tracing routes of greater slopes between the cells. The algorithm execution flowchart is presented, and the model is validated. Finally, a geomorphological study is presented in the Piratini river basin, showing thar developed model mimics largescale natural phenomena of watershed processes.
期刊介绍:
Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.