在Calabi-Yau上数捆4倍,我

IF 2.3 1区 数学 Q1 MATHEMATICS
Jeongseok Oh, Richard P. Thomas
{"title":"在Calabi-Yau上数捆4倍,我","authors":"Jeongseok Oh, Richard P. Thomas","doi":"10.1215/00127094-2022-0059","DOIUrl":null,"url":null,"abstract":"Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Counting sheaves on Calabi–Yau 4-folds, I\",\"authors\":\"Jeongseok Oh, Richard P. Thomas\",\"doi\":\"10.1215/00127094-2022-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\\\\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0059\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0059","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33

摘要

Borisov-Joyce利用衍生微分几何构造了Calabi-Yau 4折上稳定轮轴紧致模空间上的实虚循环。我们构造一个代数虚循环。关键的一步是将eddin - graham的平方根欧拉类定位为$SO(r,\mathbb C)$束到各向同性截面的零轨迹,或各向同性锥的支撑。证明了环面局部化公式,使不变量可计算,并将其推广到固定轨迹紧致时的非紧致情况。通过定义K理论的平方根欧拉类及其局部化版本,给出了K理论的细化。接下来,我们证明了我们的不变量再现了鲍里索夫-乔伊斯的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting sheaves on Calabi–Yau 4-folds, I
Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信