{"title":"添加可生物降解添加剂的椰子油基切削液在AISI 1040碳钢圆柱车削中的性能评价","authors":"S. Adedayo, Bright Omoshola, P. Omoniyi","doi":"10.36547/ams.28.1.1256","DOIUrl":null,"url":null,"abstract":"This article analyzed the effect of coconut oil-based cutting fluid with emulsion properties of 5%. The cutting fluid was evaluated by comparing it with conventional cutting fluid (Petroleum Based). Machining temperature at the tool-workpiece interface was measured during straight turning operation on CNC machine at various cutting speeds, depths of cut, and fixed feed rate of 7.5 mm/min for 15 minutes. The Response Surface Methodology (RSM) was also used to determine the machining parameters' effect on each cutting fluid's temperature at the tool-workpiece interface. It was observed that the developed coconut cutting fluid outperformed the other cutting fluids as a coolant at all experimented speeds, with a maximum temperature of 63.5 °C at the working zone as against 90.6 °C observed for conventional cutting fluid and 163.8 °C for dry turning. The viscosity values obtained from the developed cutting fluid between 40 °C and 100 °C show the tendency of the developed cutting fluid to maintain its lubricity at a higher temperature. Depth of cut was also observed to have a significant effect on the temperature at the tool-workpiece interface.","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Evaluation of Coconut Oil Based Cutting Fluid with Biodegradable Additives on Cylindrical Turning of AISI 1040 Carbon Steel\",\"authors\":\"S. Adedayo, Bright Omoshola, P. Omoniyi\",\"doi\":\"10.36547/ams.28.1.1256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article analyzed the effect of coconut oil-based cutting fluid with emulsion properties of 5%. The cutting fluid was evaluated by comparing it with conventional cutting fluid (Petroleum Based). Machining temperature at the tool-workpiece interface was measured during straight turning operation on CNC machine at various cutting speeds, depths of cut, and fixed feed rate of 7.5 mm/min for 15 minutes. The Response Surface Methodology (RSM) was also used to determine the machining parameters' effect on each cutting fluid's temperature at the tool-workpiece interface. It was observed that the developed coconut cutting fluid outperformed the other cutting fluids as a coolant at all experimented speeds, with a maximum temperature of 63.5 °C at the working zone as against 90.6 °C observed for conventional cutting fluid and 163.8 °C for dry turning. The viscosity values obtained from the developed cutting fluid between 40 °C and 100 °C show the tendency of the developed cutting fluid to maintain its lubricity at a higher temperature. Depth of cut was also observed to have a significant effect on the temperature at the tool-workpiece interface.\",\"PeriodicalId\":44511,\"journal\":{\"name\":\"Acta Metallurgica Slovaca\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/ams.28.1.1256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.28.1.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Performance Evaluation of Coconut Oil Based Cutting Fluid with Biodegradable Additives on Cylindrical Turning of AISI 1040 Carbon Steel
This article analyzed the effect of coconut oil-based cutting fluid with emulsion properties of 5%. The cutting fluid was evaluated by comparing it with conventional cutting fluid (Petroleum Based). Machining temperature at the tool-workpiece interface was measured during straight turning operation on CNC machine at various cutting speeds, depths of cut, and fixed feed rate of 7.5 mm/min for 15 minutes. The Response Surface Methodology (RSM) was also used to determine the machining parameters' effect on each cutting fluid's temperature at the tool-workpiece interface. It was observed that the developed coconut cutting fluid outperformed the other cutting fluids as a coolant at all experimented speeds, with a maximum temperature of 63.5 °C at the working zone as against 90.6 °C observed for conventional cutting fluid and 163.8 °C for dry turning. The viscosity values obtained from the developed cutting fluid between 40 °C and 100 °C show the tendency of the developed cutting fluid to maintain its lubricity at a higher temperature. Depth of cut was also observed to have a significant effect on the temperature at the tool-workpiece interface.