空间形式上特征函数沿平行张量的协变导数及一个由顶点代数结构激发的猜想

IF 0.7 2区 数学 Q2 MATHEMATICS
Fei Qi
{"title":"空间形式上特征函数沿平行张量的协变导数及一个由顶点代数结构激发的猜想","authors":"Fei Qi","doi":"10.4171/jncg/472","DOIUrl":null,"url":null,"abstract":"We study the covariant derivatives of an eigenfunction for the Laplace-Beltrami operator on a complete, connected Riemannian manifold with nonzero constant sectional curvature. We show that along every parallel tensor, the covariant derivative is a scalar multiple of the eigenfunction. We also show that the scalar is a polynomial depending on the eigenvalue and prove some properties. A conjecture motivated by the study of vertex algebraic structure on space forms is also announced, suggesting the existence of interesting structures in these polynomials that awaits further exploration.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Covariant derivatives of eigenfunctions along parallel tensors over space forms and a conjecture motivated by the vertex algebraic structure\",\"authors\":\"Fei Qi\",\"doi\":\"10.4171/jncg/472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the covariant derivatives of an eigenfunction for the Laplace-Beltrami operator on a complete, connected Riemannian manifold with nonzero constant sectional curvature. We show that along every parallel tensor, the covariant derivative is a scalar multiple of the eigenfunction. We also show that the scalar is a polynomial depending on the eigenvalue and prove some properties. A conjecture motivated by the study of vertex algebraic structure on space forms is also announced, suggesting the existence of interesting structures in these polynomials that awaits further exploration.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/472\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/472","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了具有非零常截面曲率的完全连通黎曼流形上拉普拉斯-贝尔特拉米算子本征函数的协变导数。我们证明了沿着每个平行张量,协变导数是本征函数的标量倍数。我们还证明了标量是一个依赖于特征值的多项式,并证明了一些性质。还宣布了一个由研究空间形式上的顶点代数结构引起的猜想,表明这些多项式中存在有趣的结构,有待进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariant derivatives of eigenfunctions along parallel tensors over space forms and a conjecture motivated by the vertex algebraic structure
We study the covariant derivatives of an eigenfunction for the Laplace-Beltrami operator on a complete, connected Riemannian manifold with nonzero constant sectional curvature. We show that along every parallel tensor, the covariant derivative is a scalar multiple of the eigenfunction. We also show that the scalar is a polynomial depending on the eigenvalue and prove some properties. A conjecture motivated by the study of vertex algebraic structure on space forms is also announced, suggesting the existence of interesting structures in these polynomials that awaits further exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信