保积最小模的满射映射

IF 0.6 Q3 MATHEMATICS
Cubo Pub Date : 2023-04-20 DOI:10.56754/0719-0646.2501.139
Sepide Hajighasemi, S. Hejazian
{"title":"保积最小模的满射映射","authors":"Sepide Hajighasemi, S. Hejazian","doi":"10.56754/0719-0646.2501.139","DOIUrl":null,"url":null,"abstract":"Suppose $\\mathfrak{B}(H)$ is the Banach algebra of all bounded linear operators on a Hilbert space $H$ with $\\dim(H)\\geq 3$. Let $\\gamma(.)$ denote the reduced minimum modulus of an operator. We charaterize surjective maps $\\varphi$ on $\\mathfrak{B}(H)$ satisfying $$\\gamma(\\varphi(T)\\varphi(S))=\\gamma(T S)\\;\\;\\;(T, S\\in \\mathfrak{B}(H)).$$ Also, we give the general form of surjective maps on $\\mathfrak B(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surjective maps preserving the reduced minimum modulus of products\",\"authors\":\"Sepide Hajighasemi, S. Hejazian\",\"doi\":\"10.56754/0719-0646.2501.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose $\\\\mathfrak{B}(H)$ is the Banach algebra of all bounded linear operators on a Hilbert space $H$ with $\\\\dim(H)\\\\geq 3$. Let $\\\\gamma(.)$ denote the reduced minimum modulus of an operator. We charaterize surjective maps $\\\\varphi$ on $\\\\mathfrak{B}(H)$ satisfying $$\\\\gamma(\\\\varphi(T)\\\\varphi(S))=\\\\gamma(T S)\\\\;\\\\;\\\\;(T, S\\\\in \\\\mathfrak{B}(H)).$$ Also, we give the general form of surjective maps on $\\\\mathfrak B(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2501.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2501.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设$\mathfrak{B}(H)$是Hilbert空间$H$上所有有界线性算子的Banach代数,$\dim(H)\geq3$。设$\gamma(.)$表示算子的约化最小模。我们刻画了$\mathfrak{B}(H)$上满足$$\gamma(\varphi(T)\varphi(S))=\gamma;(T,S\in\mathfrak{B}(H))。$$此外,我们还给出了$\mathfrak B(H)$上保留算子的Jordan三乘积的约化最小模的满射映射的一般形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surjective maps preserving the reduced minimum modulus of products
Suppose $\mathfrak{B}(H)$ is the Banach algebra of all bounded linear operators on a Hilbert space $H$ with $\dim(H)\geq 3$. Let $\gamma(.)$ denote the reduced minimum modulus of an operator. We charaterize surjective maps $\varphi$ on $\mathfrak{B}(H)$ satisfying $$\gamma(\varphi(T)\varphi(S))=\gamma(T S)\;\;\;(T, S\in \mathfrak{B}(H)).$$ Also, we give the general form of surjective maps on $\mathfrak B(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信