{"title":"保积最小模的满射映射","authors":"Sepide Hajighasemi, S. Hejazian","doi":"10.56754/0719-0646.2501.139","DOIUrl":null,"url":null,"abstract":"Suppose $\\mathfrak{B}(H)$ is the Banach algebra of all bounded linear operators on a Hilbert space $H$ with $\\dim(H)\\geq 3$. Let $\\gamma(.)$ denote the reduced minimum modulus of an operator. We charaterize surjective maps $\\varphi$ on $\\mathfrak{B}(H)$ satisfying $$\\gamma(\\varphi(T)\\varphi(S))=\\gamma(T S)\\;\\;\\;(T, S\\in \\mathfrak{B}(H)).$$ Also, we give the general form of surjective maps on $\\mathfrak B(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surjective maps preserving the reduced minimum modulus of products\",\"authors\":\"Sepide Hajighasemi, S. Hejazian\",\"doi\":\"10.56754/0719-0646.2501.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose $\\\\mathfrak{B}(H)$ is the Banach algebra of all bounded linear operators on a Hilbert space $H$ with $\\\\dim(H)\\\\geq 3$. Let $\\\\gamma(.)$ denote the reduced minimum modulus of an operator. We charaterize surjective maps $\\\\varphi$ on $\\\\mathfrak{B}(H)$ satisfying $$\\\\gamma(\\\\varphi(T)\\\\varphi(S))=\\\\gamma(T S)\\\\;\\\\;\\\\;(T, S\\\\in \\\\mathfrak{B}(H)).$$ Also, we give the general form of surjective maps on $\\\\mathfrak B(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2501.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2501.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Surjective maps preserving the reduced minimum modulus of products
Suppose $\mathfrak{B}(H)$ is the Banach algebra of all bounded linear operators on a Hilbert space $H$ with $\dim(H)\geq 3$. Let $\gamma(.)$ denote the reduced minimum modulus of an operator. We charaterize surjective maps $\varphi$ on $\mathfrak{B}(H)$ satisfying $$\gamma(\varphi(T)\varphi(S))=\gamma(T S)\;\;\;(T, S\in \mathfrak{B}(H)).$$ Also, we give the general form of surjective maps on $\mathfrak B(H)$ preserving the reduced minimum modulus of Jordan triple products of operators.