关于路径因子临界可避免图的一些结果

IF 0.5 4区 数学 Q3 MATHEMATICS
Sizhong Zhou
{"title":"关于路径因子临界可避免图的一些结果","authors":"Sizhong Zhou","doi":"10.7151/dmgt.2364","DOIUrl":null,"url":null,"abstract":"Abstract A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is an integer. A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P ≥k-factor avoidable graph. Let G be an (n + 2)-connected graph. In this paper, we demonstrate that (i) G is a (P≥2, n)-factor critical avoidable graph if tough(G)>n+24 tough\\left( G \\right) > {{n + 2} \\over 4} ; (ii) G is a (P≥3, n)-factor critical avoidable graph if tough(G)>n+12 tough\\left( G \\right) > {{n + 1} \\over 2} ; (iii) G is a (P≥2, n)-factor critical avoidable graph if I(G)>n+23 I\\left( G \\right) > {{n + 2} \\over 3} ; (iv) G is a (P≥3, n)-factor critical avoidable graph if I(G)>n+32 I\\left( G \\right) > {{n + 3} \\over 2} . Furthermore, we claim that these conditions are sharp.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Some Results on Path-Factor Critical Avoidable Graphs\",\"authors\":\"Sizhong Zhou\",\"doi\":\"10.7151/dmgt.2364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is an integer. A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P ≥k-factor avoidable graph. Let G be an (n + 2)-connected graph. In this paper, we demonstrate that (i) G is a (P≥2, n)-factor critical avoidable graph if tough(G)>n+24 tough\\\\left( G \\\\right) > {{n + 2} \\\\over 4} ; (ii) G is a (P≥3, n)-factor critical avoidable graph if tough(G)>n+12 tough\\\\left( G \\\\right) > {{n + 1} \\\\over 2} ; (iii) G is a (P≥2, n)-factor critical avoidable graph if I(G)>n+23 I\\\\left( G \\\\right) > {{n + 2} \\\\over 3} ; (iv) G is a (P≥3, n)-factor critical avoidable graph if I(G)>n+32 I\\\\left( G \\\\right) > {{n + 3} \\\\over 2} . Furthermore, we claim that these conditions are sharp.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2364\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

摘要

路径因子是G的生成子图F,使得F的每个分量都是至少有两个顶点的路径。我们写P≥k = {Pi: i≥k}。则G的P≥k因子表示每个分量至少包含k个顶点的路径因子,其中k≥2为整数。若对于任意e∈e (G), G存在不含e的P≥k个因子,则图G称为P≥k因素可避免图。若对于任意Q∈e (G),且|Q| = n, G−Q为P≥k因素可避免图,则图G称为(P≥k, n)个因素关键可避免图。设G是一个(n + 2)连通图。在本文中,我们证明(i)如果tough(G)>n+24 tough\左(G \右)> {{n +2} \ / 4}, G是一个(P≥2,n)因子临界可避免图;(ii)若tough(G)>n+12 tough\left(G \right) > {{n +1} \ / 2},则G为(P≥3,n)因子临界可避免图;(iii)当I(G)>n+23 I\左(G \右)> {{n +2} \ / 3}时,G为(P≥2,n)因子临界可避免图;(iv)当I(G)>n+32 I\左(G \右)> {{n +3} \ / 2}时,G是一个(P≥3,n)因子临界可避免图。此外,我们声称这些条件是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on Path-Factor Critical Avoidable Graphs
Abstract A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is an integer. A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P ≥k-factor avoidable graph. Let G be an (n + 2)-connected graph. In this paper, we demonstrate that (i) G is a (P≥2, n)-factor critical avoidable graph if tough(G)>n+24 tough\left( G \right) > {{n + 2} \over 4} ; (ii) G is a (P≥3, n)-factor critical avoidable graph if tough(G)>n+12 tough\left( G \right) > {{n + 1} \over 2} ; (iii) G is a (P≥2, n)-factor critical avoidable graph if I(G)>n+23 I\left( G \right) > {{n + 2} \over 3} ; (iv) G is a (P≥3, n)-factor critical avoidable graph if I(G)>n+32 I\left( G \right) > {{n + 3} \over 2} . Furthermore, we claim that these conditions are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信