{"title":"关于路径因子临界可避免图的一些结果","authors":"Sizhong Zhou","doi":"10.7151/dmgt.2364","DOIUrl":null,"url":null,"abstract":"Abstract A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is an integer. A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P ≥k-factor avoidable graph. Let G be an (n + 2)-connected graph. In this paper, we demonstrate that (i) G is a (P≥2, n)-factor critical avoidable graph if tough(G)>n+24 tough\\left( G \\right) > {{n + 2} \\over 4} ; (ii) G is a (P≥3, n)-factor critical avoidable graph if tough(G)>n+12 tough\\left( G \\right) > {{n + 1} \\over 2} ; (iii) G is a (P≥2, n)-factor critical avoidable graph if I(G)>n+23 I\\left( G \\right) > {{n + 2} \\over 3} ; (iv) G is a (P≥3, n)-factor critical avoidable graph if I(G)>n+32 I\\left( G \\right) > {{n + 3} \\over 2} . Furthermore, we claim that these conditions are sharp.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"43 1","pages":"233 - 244"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Some Results on Path-Factor Critical Avoidable Graphs\",\"authors\":\"Sizhong Zhou\",\"doi\":\"10.7151/dmgt.2364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is an integer. A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P ≥k-factor avoidable graph. Let G be an (n + 2)-connected graph. In this paper, we demonstrate that (i) G is a (P≥2, n)-factor critical avoidable graph if tough(G)>n+24 tough\\\\left( G \\\\right) > {{n + 2} \\\\over 4} ; (ii) G is a (P≥3, n)-factor critical avoidable graph if tough(G)>n+12 tough\\\\left( G \\\\right) > {{n + 1} \\\\over 2} ; (iii) G is a (P≥2, n)-factor critical avoidable graph if I(G)>n+23 I\\\\left( G \\\\right) > {{n + 2} \\\\over 3} ; (iv) G is a (P≥3, n)-factor critical avoidable graph if I(G)>n+32 I\\\\left( G \\\\right) > {{n + 3} \\\\over 2} . Furthermore, we claim that these conditions are sharp.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"43 1\",\"pages\":\"233 - 244\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2364\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some Results on Path-Factor Critical Avoidable Graphs
Abstract A path factor is a spanning subgraph F of G such that every component of F is a path with at least two vertices. We write P≥k = {Pi : i ≥ k}. Then a P≥k-factor of G means a path factor in which every component admits at least k vertices, where k ≥ 2 is an integer. A graph G is called a P≥k-factor avoidable graph if for any e ∈ E(G), G admits a P≥k-factor excluding e. A graph G is called a (P≥k, n)-factor critical avoidable graph if for any Q ⊆ V (G) with |Q| = n, G − Q is a P ≥k-factor avoidable graph. Let G be an (n + 2)-connected graph. In this paper, we demonstrate that (i) G is a (P≥2, n)-factor critical avoidable graph if tough(G)>n+24 tough\left( G \right) > {{n + 2} \over 4} ; (ii) G is a (P≥3, n)-factor critical avoidable graph if tough(G)>n+12 tough\left( G \right) > {{n + 1} \over 2} ; (iii) G is a (P≥2, n)-factor critical avoidable graph if I(G)>n+23 I\left( G \right) > {{n + 2} \over 3} ; (iv) G is a (P≥3, n)-factor critical avoidable graph if I(G)>n+32 I\left( G \right) > {{n + 3} \over 2} . Furthermore, we claim that these conditions are sharp.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.