{"title":"Benders分解求解两时间尺度随机发电容量扩展问题的实验","authors":"Goran Vojvodic , Luis J. Novoa , Ahmad I. Jarrah","doi":"10.1016/j.ejco.2023.100059","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of solving a classical generation capacity expansion problem is to ensure that, in the medium- to long-term time frame, the electric utility has enough capacity available to reliably satisfy the demand for electricity from its customers. However, the ability to operate the newly built power plants also has to be considered. Operation of these plants could be curtailed by fuel availability, environmental constraints, or intermittency of renewable generation. This suggests that when generation capacity expansion problems are solved, along with the yearly timescale necessary to capture the long-term effect of the decisions, it is necessary to include a timescale granular enough to represent operations of generators with a credible fidelity. Additionally, given that the time horizon for a capacity expansion model is long, stochastic modeling of key parameters may generate more insightful, realistic, and judicious results. In the current model, we allow the demand for electricity and natural gas to behave stochastically. Together with the dual timescales, the randomness results in a large problem that is challenging to solve. In this paper, we experiment with synergistically combining elements of several methods that are, for the most part, based on Benders decomposition and construct an algorithm which allows us to find near-optimal solutions to the problem with reasonable run times.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100059"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimentation with Benders decomposition for solving the two-timescale stochastic generation capacity expansion problem\",\"authors\":\"Goran Vojvodic , Luis J. Novoa , Ahmad I. Jarrah\",\"doi\":\"10.1016/j.ejco.2023.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of solving a classical generation capacity expansion problem is to ensure that, in the medium- to long-term time frame, the electric utility has enough capacity available to reliably satisfy the demand for electricity from its customers. However, the ability to operate the newly built power plants also has to be considered. Operation of these plants could be curtailed by fuel availability, environmental constraints, or intermittency of renewable generation. This suggests that when generation capacity expansion problems are solved, along with the yearly timescale necessary to capture the long-term effect of the decisions, it is necessary to include a timescale granular enough to represent operations of generators with a credible fidelity. Additionally, given that the time horizon for a capacity expansion model is long, stochastic modeling of key parameters may generate more insightful, realistic, and judicious results. In the current model, we allow the demand for electricity and natural gas to behave stochastically. Together with the dual timescales, the randomness results in a large problem that is challenging to solve. In this paper, we experiment with synergistically combining elements of several methods that are, for the most part, based on Benders decomposition and construct an algorithm which allows us to find near-optimal solutions to the problem with reasonable run times.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"11 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Experimentation with Benders decomposition for solving the two-timescale stochastic generation capacity expansion problem
The main purpose of solving a classical generation capacity expansion problem is to ensure that, in the medium- to long-term time frame, the electric utility has enough capacity available to reliably satisfy the demand for electricity from its customers. However, the ability to operate the newly built power plants also has to be considered. Operation of these plants could be curtailed by fuel availability, environmental constraints, or intermittency of renewable generation. This suggests that when generation capacity expansion problems are solved, along with the yearly timescale necessary to capture the long-term effect of the decisions, it is necessary to include a timescale granular enough to represent operations of generators with a credible fidelity. Additionally, given that the time horizon for a capacity expansion model is long, stochastic modeling of key parameters may generate more insightful, realistic, and judicious results. In the current model, we allow the demand for electricity and natural gas to behave stochastically. Together with the dual timescales, the randomness results in a large problem that is challenging to solve. In this paper, we experiment with synergistically combining elements of several methods that are, for the most part, based on Benders decomposition and construct an algorithm which allows us to find near-optimal solutions to the problem with reasonable run times.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.