A. Tamayo-Domínguez, P. Sánchez-Olivares, A. Camacho-Hernandez, J. Fernández-González
{"title":"应用于毫米波器件的精确内部电镀和3d打印工艺指南","authors":"A. Tamayo-Domínguez, P. Sánchez-Olivares, A. Camacho-Hernandez, J. Fernández-González","doi":"10.1109/LMWC.2022.3182868","DOIUrl":null,"url":null,"abstract":"This letter details the metallization process of 3-D-printed WR-28 and WR-10 waveguides using electroplating. The 3-D printing technique is stereolithography, so the printed parts are plastic-based. A two-step metallization process is followed: a premetallization with nickel spray to make the part conductive and a subsequent electroplating process, emphasizing the chemical compounds and quantities needed to improve the result obtained, as well as the metallization times and currents applied on the parts. In addition, manufacturing deviations are measured and compensated. The results obtained are compared with simulations and commercial waveguide sections. Measurements show <inline-formula> <tex-math notation=\"LaTeX\">$S_{11}$ </tex-math></inline-formula> below −33 and −21 dB for WR-28 and WR-10, respectively. Measured average losses are around 1 dB/m for WR-28 and 4 dB/m for WR-10, which is equivalent to copper with an effective surface roughness lower than <inline-formula> <tex-math notation=\"LaTeX\">$0.4~\\mu \\text{m}$ </tex-math></inline-formula>.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1267-1270"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Guidelines for Accurate in-House Electroplating and 3-D-Printing Processes Applied to mm-Wave Devices\",\"authors\":\"A. Tamayo-Domínguez, P. Sánchez-Olivares, A. Camacho-Hernandez, J. Fernández-González\",\"doi\":\"10.1109/LMWC.2022.3182868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter details the metallization process of 3-D-printed WR-28 and WR-10 waveguides using electroplating. The 3-D printing technique is stereolithography, so the printed parts are plastic-based. A two-step metallization process is followed: a premetallization with nickel spray to make the part conductive and a subsequent electroplating process, emphasizing the chemical compounds and quantities needed to improve the result obtained, as well as the metallization times and currents applied on the parts. In addition, manufacturing deviations are measured and compensated. The results obtained are compared with simulations and commercial waveguide sections. Measurements show <inline-formula> <tex-math notation=\\\"LaTeX\\\">$S_{11}$ </tex-math></inline-formula> below −33 and −21 dB for WR-28 and WR-10, respectively. Measured average losses are around 1 dB/m for WR-28 and 4 dB/m for WR-10, which is equivalent to copper with an effective surface roughness lower than <inline-formula> <tex-math notation=\\\"LaTeX\\\">$0.4~\\\\mu \\\\text{m}$ </tex-math></inline-formula>.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1267-1270\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3182868\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3182868","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Guidelines for Accurate in-House Electroplating and 3-D-Printing Processes Applied to mm-Wave Devices
This letter details the metallization process of 3-D-printed WR-28 and WR-10 waveguides using electroplating. The 3-D printing technique is stereolithography, so the printed parts are plastic-based. A two-step metallization process is followed: a premetallization with nickel spray to make the part conductive and a subsequent electroplating process, emphasizing the chemical compounds and quantities needed to improve the result obtained, as well as the metallization times and currents applied on the parts. In addition, manufacturing deviations are measured and compensated. The results obtained are compared with simulations and commercial waveguide sections. Measurements show $S_{11}$ below −33 and −21 dB for WR-28 and WR-10, respectively. Measured average losses are around 1 dB/m for WR-28 and 4 dB/m for WR-10, which is equivalent to copper with an effective surface roughness lower than $0.4~\mu \text{m}$ .
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.