重倍空间中Hausdorff维dvoretzky型定理的一个简单证明

Pub Date : 2021-04-24 DOI:10.1515/agms-2022-0133
M. Mendel
{"title":"重倍空间中Hausdorff维dvoretzky型定理的一个简单证明","authors":"M. Mendel","doi":"10.1515/agms-2022-0133","DOIUrl":null,"url":null,"abstract":"Abstract The ultrametric skeleton theorem [Mendel, Naor 2013] implies, among other things, the following nonlinear Dvoretzky-type theorem for Hausdorff dimension: For any 0 < β < α, any compact metric space X of Hausdorff dimension α contains a subset which is biLipschitz equivalent to an ultrametric and has Hausdorff dimension at least β. In this note we present a simple proof of the ultrametric skeleton theorem in doubling spaces using Bartal’s Ramsey decompositions [Bartal 2021]. The same general approach is also used to answer a question of Zindulka [Zindulka 2020] about the existence of “nearly ultrametric” subsets of compact spaces having full Hausdorff dimension.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simple Proof of Dvoretzky-Type Theorem for Hausdorff Dimension in Doubling Spaces\",\"authors\":\"M. Mendel\",\"doi\":\"10.1515/agms-2022-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The ultrametric skeleton theorem [Mendel, Naor 2013] implies, among other things, the following nonlinear Dvoretzky-type theorem for Hausdorff dimension: For any 0 < β < α, any compact metric space X of Hausdorff dimension α contains a subset which is biLipschitz equivalent to an ultrametric and has Hausdorff dimension at least β. In this note we present a simple proof of the ultrametric skeleton theorem in doubling spaces using Bartal’s Ramsey decompositions [Bartal 2021]. The same general approach is also used to answer a question of Zindulka [Zindulka 2020] about the existence of “nearly ultrametric” subsets of compact spaces having full Hausdorff dimension.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要超度量骨架定理[Mendel, Naor 2013]推导出以下Hausdorff维数的非线性dvoretzky型定理:对于任意0 < β < α,任意Hausdorff维数α的紧度量空间X包含一个与超度量等价且Hausdorff维数至少为β的biLipschitz子集。在这篇文章中,我们使用Bartal的Ramsey分解给出了在加倍空间中超度量骨架定理的一个简单证明[Bartal 2021]。同样的一般方法也用于回答Zindulka [Zindulka 2020]关于具有完整Hausdorff维的紧化空间的“近超度量”子集的存在性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Simple Proof of Dvoretzky-Type Theorem for Hausdorff Dimension in Doubling Spaces
Abstract The ultrametric skeleton theorem [Mendel, Naor 2013] implies, among other things, the following nonlinear Dvoretzky-type theorem for Hausdorff dimension: For any 0 < β < α, any compact metric space X of Hausdorff dimension α contains a subset which is biLipschitz equivalent to an ultrametric and has Hausdorff dimension at least β. In this note we present a simple proof of the ultrametric skeleton theorem in doubling spaces using Bartal’s Ramsey decompositions [Bartal 2021]. The same general approach is also used to answer a question of Zindulka [Zindulka 2020] about the existence of “nearly ultrametric” subsets of compact spaces having full Hausdorff dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信