{"title":"利用机器学习发现转录组简编中的通路和细胞类型特征","authors":"G. Way, C. Greene","doi":"10.1146/ANNUREV-BIODATASCI-072018-021348","DOIUrl":null,"url":null,"abstract":"Pathway and cell type signatures are patterns present in transcriptome data that are associated with biological processes or phenotypic consequences. These signatures result from specific cell type and pathway expression but can require large transcriptomic compendia to detect. Machine learning techniques can be powerful tools for signature discovery through their ability to provide accurate and interpretable results. In this review, we discuss various machine learning applications to extract pathway and cell type signatures from transcriptomic compendia. We focus on the biological motivations and interpretation for both supervised and unsupervised learning approaches in this setting. We consider recent advances, including deep learning, and their applications to expanding bulk and single-cell RNA data. As data and computational resources increase, there will be more opportunities for machine learning to aid in revealing biological signatures.","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021348","citationCount":"10","resultStr":"{\"title\":\"Discovering Pathway and Cell Type Signatures in Transcriptomic Compendia with Machine Learning\",\"authors\":\"G. Way, C. Greene\",\"doi\":\"10.1146/ANNUREV-BIODATASCI-072018-021348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathway and cell type signatures are patterns present in transcriptome data that are associated with biological processes or phenotypic consequences. These signatures result from specific cell type and pathway expression but can require large transcriptomic compendia to detect. Machine learning techniques can be powerful tools for signature discovery through their ability to provide accurate and interpretable results. In this review, we discuss various machine learning applications to extract pathway and cell type signatures from transcriptomic compendia. We focus on the biological motivations and interpretation for both supervised and unsupervised learning approaches in this setting. We consider recent advances, including deep learning, and their applications to expanding bulk and single-cell RNA data. As data and computational resources increase, there will be more opportunities for machine learning to aid in revealing biological signatures.\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2019-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/ANNUREV-BIODATASCI-072018-021348\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/ANNUREV-BIODATASCI-072018-021348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Discovering Pathway and Cell Type Signatures in Transcriptomic Compendia with Machine Learning
Pathway and cell type signatures are patterns present in transcriptome data that are associated with biological processes or phenotypic consequences. These signatures result from specific cell type and pathway expression but can require large transcriptomic compendia to detect. Machine learning techniques can be powerful tools for signature discovery through their ability to provide accurate and interpretable results. In this review, we discuss various machine learning applications to extract pathway and cell type signatures from transcriptomic compendia. We focus on the biological motivations and interpretation for both supervised and unsupervised learning approaches in this setting. We consider recent advances, including deep learning, and their applications to expanding bulk and single-cell RNA data. As data and computational resources increase, there will be more opportunities for machine learning to aid in revealing biological signatures.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.