最小耦合重力下带电各向异性奇异星模型

IF 1.6 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
H. Nazar, G. Abbas
{"title":"最小耦合重力下带电各向异性奇异星模型","authors":"H. Nazar, G. Abbas","doi":"10.1155/2021/6698208","DOIUrl":null,"url":null,"abstract":"<jats:p>In the present article, we have investigated a new family of nonsingular solutions of static relativistic compact sphere which incorporates the characteristics of anisotropic fluid and electromagnetic field in the context of minimally coupled <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>R</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> theory of gravity. The strange matter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mtext>MIT</mtext>\n </math>\n </jats:inline-formula> bag model equation of state (EoS) has been considered along with the usual forms of the Karori–Barua <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mtext>KB</mtext>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> metric potentials. For this purpose, we derived the Einstein–Maxwell field equations in the assistance of strange matter EoS and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mtext>KB</mtext>\n </math>\n </jats:inline-formula> type ansatz by employing the two viable and cosmologically well-consistent models of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>R</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mi>R</mi>\n <mo>+</mo>\n <mi>γ</mi>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>R</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mi>R</mi>\n <mo>+</mo>\n <mi>γ</mi>\n <mi>R</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>R</mi>\n <mo>+</mo>\n <mi>α</mi>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. Thereafter, we have checked the physical acceptability of the proposed results such as pressure, energy density, energy conditions, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mtext>TOV</mtext>\n </math>\n </jats:inline-formula> equation, stability conditions, mass function, compactness, and surface redshift by using graphical representation. Moreover, we have investigated that the energy density and radial pressure are nonsingular at the core or free from central singularity and always regular at every interior point of the compact sphere. The numerical values of such parameters along with the surface density, charge to radius ratio, and bag constant are computed for three well-known compact stars such as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mtext>CS1</mtext>\n </mrow>\n </mfenced>\n <mtext>SAXJ</mtext>\n <mn>1808</mn>\n <mtext>.</mtext>\n <mn>4</mn>\n <mo>−</mo>\n <mn>3658</mn>\n </math>\n </jats:inline-formula> (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mover accent=\"true\">\n <mi>x</mi>\n <mo>˜</mo>\n </mover>\n <mo>=</mo>\n <mn>7.07</mn>\n <mo> </mo>\n <mtext>km</mtext>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mtext>CS2</mtext>\n </mrow>\n </mfenced>\n <mtext>VelaX</mtext>\n <mo>−</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>\n <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mover accent=\"true\">\n <mi>x</mi>\n <mo>˜</mo>\n </mover>\n <mo>=</mo>\n <mn>9.56</mn>\n <mo> </mo>\n <mtext>km</mtext>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mtext>CS3</mtext>\n </mrow>\n </mfenced>\n <mtext>4U1820</mtext>\n <mo>−</mo>\n <mn>30</mn>\n </math>\n </jats:inline-formula>\n <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mover accent=\"true\">\n <mi>x</mi>\n <mo>˜</mo>\n </mover>\n <mo>=</mo>\n <mn>10</mn>\n <mo> </mo>\n <mtext>km</mtext>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and are presented in Tables 1–6. Conclusively, we have noticed that our presented charged compact stellar object in the background of two well-known <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>R</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> models obeys all the necessary conditions for the stable equilibrium position and which is also perfectly fit to compose the strange quark star object.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model of Charged Anisotropic Strange Stars in Minimally Coupled \\n f\\n \\n \\n R\\n \\n \\n Gravity\",\"authors\":\"H. Nazar, G. Abbas\",\"doi\":\"10.1155/2021/6698208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In the present article, we have investigated a new family of nonsingular solutions of static relativistic compact sphere which incorporates the characteristics of anisotropic fluid and electromagnetic field in the context of minimally coupled <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> theory of gravity. The strange matter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mtext>MIT</mtext>\\n </math>\\n </jats:inline-formula> bag model equation of state (EoS) has been considered along with the usual forms of the Karori–Barua <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mtext>KB</mtext>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> metric potentials. For this purpose, we derived the Einstein–Maxwell field equations in the assistance of strange matter EoS and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mtext>KB</mtext>\\n </math>\\n </jats:inline-formula> type ansatz by employing the two viable and cosmologically well-consistent models of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mi>R</mi>\\n <mo>+</mo>\\n <mi>γ</mi>\\n <msup>\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mi>R</mi>\\n <mo>+</mo>\\n <mi>γ</mi>\\n <mi>R</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>R</mi>\\n <mo>+</mo>\\n <mi>α</mi>\\n <msup>\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. Thereafter, we have checked the physical acceptability of the proposed results such as pressure, energy density, energy conditions, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mtext>TOV</mtext>\\n </math>\\n </jats:inline-formula> equation, stability conditions, mass function, compactness, and surface redshift by using graphical representation. Moreover, we have investigated that the energy density and radial pressure are nonsingular at the core or free from central singularity and always regular at every interior point of the compact sphere. The numerical values of such parameters along with the surface density, charge to radius ratio, and bag constant are computed for three well-known compact stars such as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mtext>CS1</mtext>\\n </mrow>\\n </mfenced>\\n <mtext>SAXJ</mtext>\\n <mn>1808</mn>\\n <mtext>.</mtext>\\n <mn>4</mn>\\n <mo>−</mo>\\n <mn>3658</mn>\\n </math>\\n </jats:inline-formula> (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mover accent=\\\"true\\\">\\n <mi>x</mi>\\n <mo>˜</mo>\\n </mover>\\n <mo>=</mo>\\n <mn>7.07</mn>\\n <mo> </mo>\\n <mtext>km</mtext>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mtext>CS2</mtext>\\n </mrow>\\n </mfenced>\\n <mtext>VelaX</mtext>\\n <mo>−</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula>\\n <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mover accent=\\\"true\\\">\\n <mi>x</mi>\\n <mo>˜</mo>\\n </mover>\\n <mo>=</mo>\\n <mn>9.56</mn>\\n <mo> </mo>\\n <mtext>km</mtext>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mtext>CS3</mtext>\\n </mrow>\\n </mfenced>\\n <mtext>4U1820</mtext>\\n <mo>−</mo>\\n <mn>30</mn>\\n </math>\\n </jats:inline-formula>\\n <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mover accent=\\\"true\\\">\\n <mi>x</mi>\\n <mo>˜</mo>\\n </mover>\\n <mo>=</mo>\\n <mn>10</mn>\\n <mo> </mo>\\n <mtext>km</mtext>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and are presented in Tables 1–6. Conclusively, we have noticed that our presented charged compact stellar object in the background of two well-known <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> models obeys all the necessary conditions for the stable equilibrium position and which is also perfectly fit to compose the strange quark star object.</jats:p>\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6698208\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6698208","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

56  km,和CS3 4U1820−30x~=10  km,如表1-6所示。最后,我们注意到,在两个著名的fR模型的背景下,我们提出的带电致密恒星物体符合稳定平衡位置的所有必要条件它也非常适合组成奇异的夸克星物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model of Charged Anisotropic Strange Stars in Minimally Coupled f R Gravity
In the present article, we have investigated a new family of nonsingular solutions of static relativistic compact sphere which incorporates the characteristics of anisotropic fluid and electromagnetic field in the context of minimally coupled f R theory of gravity. The strange matter MIT bag model equation of state (EoS) has been considered along with the usual forms of the Karori–Barua KB metric potentials. For this purpose, we derived the Einstein–Maxwell field equations in the assistance of strange matter EoS and KB type ansatz by employing the two viable and cosmologically well-consistent models of f R = R + γ R 2 and f R = R + γ R R + α R 2 . Thereafter, we have checked the physical acceptability of the proposed results such as pressure, energy density, energy conditions, TOV equation, stability conditions, mass function, compactness, and surface redshift by using graphical representation. Moreover, we have investigated that the energy density and radial pressure are nonsingular at the core or free from central singularity and always regular at every interior point of the compact sphere. The numerical values of such parameters along with the surface density, charge to radius ratio, and bag constant are computed for three well-known compact stars such as CS1 SAXJ 1808 . 4 3658 ( x ˜ = 7.07 km , CS2 VelaX 1 x ˜ = 9.56 km , and CS3 4U1820 30 x ˜ = 10 km and are presented in Tables 1–6. Conclusively, we have noticed that our presented charged compact stellar object in the background of two well-known f R models obeys all the necessary conditions for the stable equilibrium position and which is also perfectly fit to compose the strange quark star object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Astronomy
Advances in Astronomy ASTRONOMY & ASTROPHYSICS-
CiteScore
2.70
自引率
7.10%
发文量
10
审稿时长
22 weeks
期刊介绍: Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信