关于非衍射锥

IF 1.3 1区 数学 Q1 MATHEMATICS
J. Galkowski, J. Wunsch
{"title":"关于非衍射锥","authors":"J. Galkowski, J. Wunsch","doi":"10.4310/jdg/1649953486","DOIUrl":null,"url":null,"abstract":"A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,\\infty)\\times Y$ which do not diffract high frequency waves. We prove that if $Y$ is analytic and does not diffract waves at high frequency then every geodesic on $Y$ is closed with period $2\\pi$. Moreover, we show that if $\\dim Y=2$, then $Y$ is isometric to either the sphere of radius 1 or its $\\mathbb{Z}^2$ quotient, $\\mathbb{R}\\mathbb{P}^2$.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On non-diffractive cones\",\"authors\":\"J. Galkowski, J. Wunsch\",\"doi\":\"10.4310/jdg/1649953486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,\\\\infty)\\\\times Y$ which do not diffract high frequency waves. We prove that if $Y$ is analytic and does not diffract waves at high frequency then every geodesic on $Y$ is closed with period $2\\\\pi$. Moreover, we show that if $\\\\dim Y=2$, then $Y$ is isometric to either the sphere of radius 1 or its $\\\\mathbb{Z}^2$ quotient, $\\\\mathbb{R}\\\\mathbb{P}^2$.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1649953486\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1649953486","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近对反问题感兴趣的一个主题是一个角是否必须衍射固定频率波。我们把这个问题稍微推广一下,研究不衍射高频波的锥细胞$[0,\infty)\times Y$。我们证明了如果$Y$是解析的,并且在高频处不绕射波,那么$Y$上的每个测地线都以周期$2\pi$闭合。此外,我们证明如果$\dim Y=2$,那么$Y$与半径为1的球体或其$\mathbb{Z}^2$商$\mathbb{R}\mathbb{P}^2$是等距的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On non-diffractive cones
A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,\infty)\times Y$ which do not diffract high frequency waves. We prove that if $Y$ is analytic and does not diffract waves at high frequency then every geodesic on $Y$ is closed with period $2\pi$. Moreover, we show that if $\dim Y=2$, then $Y$ is isometric to either the sphere of radius 1 or its $\mathbb{Z}^2$ quotient, $\mathbb{R}\mathbb{P}^2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信