{"title":"有向对偶的上同调与变形","authors":"Ali N. A. Koam, Ripan Saha","doi":"10.1007/s40062-020-00265-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of oriented dialgebra and develop a cohomology theory for oriented dialgebras by mixing the standard chain complexes computing group cohomology and associative dialgebra cohomology. We also introduce a formal deformation theory for oriented dialgebras and show that cohomology of oriented dialgebras controls such deformations.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 3-4","pages":"511 - 536"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00265-1","citationCount":"0","resultStr":"{\"title\":\"Cohomology and deformations of oriented dialgebras\",\"authors\":\"Ali N. A. Koam, Ripan Saha\",\"doi\":\"10.1007/s40062-020-00265-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of oriented dialgebra and develop a cohomology theory for oriented dialgebras by mixing the standard chain complexes computing group cohomology and associative dialgebra cohomology. We also introduce a formal deformation theory for oriented dialgebras and show that cohomology of oriented dialgebras controls such deformations.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 3-4\",\"pages\":\"511 - 536\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00265-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00265-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00265-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cohomology and deformations of oriented dialgebras
We introduce a notion of oriented dialgebra and develop a cohomology theory for oriented dialgebras by mixing the standard chain complexes computing group cohomology and associative dialgebra cohomology. We also introduce a formal deformation theory for oriented dialgebras and show that cohomology of oriented dialgebras controls such deformations.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.